p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Ta có (p-1).(p+1)
p là số nguyên tố lớn hơn 3⇒⇒→ƯCLN(N;3)=1
mà p.(p-1).(p+1) chia hết cho 3
→(p-1).(p+1) chia hết cho 3 (1)
Mặt khác p là 1 số lẻ→p=2.k+1 (k thuộc Z)
→ (p-1).(p+1)=(2k+1-1).(2k+1+1)
=2k.(2k+2)
=2k.2.(k+1)
=4.k.(k+1) chia hết cho 8
→ (p-1).(p+1) chia hết cho 8 (2)
Từ (1) và (2) → (p-1).(p+1) chia hết cho 24