Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hoàng
Xem chi tiết
Vô Danh Tiểu Tốt
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 20:14

Ta có:

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

\(\ge2a+2b+2c+2ab+2bc+2ca=12\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(P\ge a^2+b^2+c^2\ge3\)

\(P_{min}=3\) khi \(a=b=c=1\)

Nguyễn Đức Duy
Xem chi tiết

Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhau nên chọn a>0

TH1: b<0;c<0 

\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)

TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

Khách vãng lai đã xóa
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:58

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

Đức Lộc
Xem chi tiết
Agatsuma Zenitsu
29 tháng 1 2020 lúc 0:15

Ta có: \(ab+bc+ca=abc\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)

\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)

Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Chứng minh tương tự ta được:

\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)

Cộng vế với vế:

\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
Trần Sơn Tùng
Xem chi tiết
Ko Cần Chs
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 0:00

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)