Cho a, b, c là các số thực dương thỏa mãn abc=a+b+c+2. Chứng minh rằng ab+bc+ca ≥ 2(a+b+c)
Cho các số a,b,c thỏa mãn abc>0, ab+bc+ac >0, a+b+c>0
Chứng minh rằng a+b+c là các số dương
Cho a, b, c là các số thực dương thỏa mãn: \(ab+bc+ca=abc\)
Chứng minh rằng: \(\frac{a}{bc\left(a+1\right)}+\frac{b}{ac\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\frac{1}{4}\)
Cho a, b, c là các số thực dương thỏa mãn abc = 1.
Chứng minh rằng \(\sqrt{\frac{a^4+b^4}{1+ab}}+\sqrt{\frac{b^4+c^4}{1+bc}}+\sqrt{\frac{c^4+a^4}{1+ac}}\ge3\)
Cho a, b, c là các số thực dương đôi một khác nhau thỏa mãn:
\(\dfrac{\sqrt{ab}+1}{\sqrt{a}}=\dfrac{\sqrt{bc}+1}{\sqrt{b}}=\dfrac{\sqrt{ca}+1}{\sqrt{c}}\)
Chứng minh rằng abc = 1
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1 chứng minh rằng
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9