(a+2)3
Viết các biểu thức sau dưới dạng tổng
a, (3+x*y^2)^2
b, (a-b^2)*(a+b^2)
c, (a^2+2*a+3)*(a^2+2*a-3)
d, (a^2+2*a+3)*(a^2-2*a-3)
e, (a^2-2*a+3)*(a^2+2*a-3)
f, (a^2+2*a+3)*(a^2-2*a+3)
g, (-a^2-2*a+3)*(-a^2-2*a+3)
h, (a^2+2*a)*(2*a-a^2)
Chứng minh:
(a-b)^2=a^2-2.ab+b^2
a^2-b^2=(a-b).(a+b)
(a+b)^3=a^3+3.a^2b+3.ab^2+b^3
(a-b)^3=a^3-3.a^2b+3.ab^2-b^3
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
chứng minh đẳng thức
a. (a-b)^2 = a^2 - 2ab +b^2
b. (a+b)^3= a^3 + 3a^2b+ 3ab^=+ b^3
c. (a-b)^3= a^3 - 3a^2b +3ab^2 -b^2
d. ( a-b)^3= a^3- 3a^2b+ 3ab^2 -b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 -b^3
g. ( a-b) ( a+b) = a^2- b^2
h. ( a+b+c) ( a^2 + b^2 +c^2 - ab- bc -ac )= a^3+ b^3=c^3 -3abc
k.( a+b+c)^2 = a^2 +b^2 + c^2 + 2ab+ 2bc+2ac
m.( x^3+ x^2y+xy^2+ y^2) ( x-y) = x^4 -y^4
n. ( a+b) ( a^3 -ab +b^2) + ( a-b) ( a^2 +ab +b^2)= 2a^3
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
1.Vt biểu thức dưới dạng tổng
a, (x+y+z)^2
b, (x-y+z)^2
c, (x-y-z)^2
2. Vt biểu thức dưới dạng tích
a, (a^2-2a+3)(a^2+a-3)
b,(a^2+2a+3)(a^2-2a+3)
c, (a^2+2a+3)(a^2+2a-3)
d, (a^2+2a+3)(a^2-2a-3)
e,(-a^2-2a+3)(-a^2-2a+3)
f,(a^2+2a)(2a-a^2)
Các bạn giúp mình vs mình cảm ơn
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Chứng minh giả thiết (a+b)^3 =a^3+3a^2b+3ab^2
(a+b).(a-b)=a^2+b^2
(a-b)^3=a^3-3a^2b+3ab^2-b^3
a^3+b^3=(a+b).(a^2-ab+b^2
a^3-b^3=(a-b).(a^2+ab+b^2
Acebb giúp mk với mk sắp phải nộp r
1) Cho a + b= -2, a^2 + b^2 = 52. Tính a^3 +b^3
2) Cho a + b = 7, a^2 + b^2 = 25. TÍnh a^3 + b^3, a^4 + b^4
3) Cho a + b = 5, a^2 + b^2 = 53. Tính a^3 + b^3, a^4 + b^4
ta có: a + b=-2 ; a^2 + b^2 = 52
=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4
=> 52 + 2ab= 4
=> 48= -2ab
=> ab= -24
a^3 + b^3 = (a+b)( a^2-ab+ b^2)
=> a^3 + b^3 = -2.(52+24)= -2. 76= -152
b1 )
cho a = 1+ 2\(^1\) + 2\(^2\) + 2\(^3\)\(^{ }\) +......+ 2\(^{2007}\)
a) tính 2a
b) chứng minh : a= 2\(^{2006}\) - 1
b2 )
cho a = 1+3+3\(^2\) +3\(^3\) +3\(^4\) +3\(^5\) + 3\(^6\) + 3\(^7\)
a) tính 2a
b) chứng minh : a= ( 3\(^8\) - 1 ) : 2
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!
Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)
Rút gọn các biểu thức sau :
a) √(2-√3)^2
b) √(3-√11)^2
c) 2√a^2 với a>=0
d) 3√(a-2)^2 với a>2
e) √a^6 với a<0
f) 2√a^2 -5a với a<0
g) √25a^2 + 3a với a>=0
h) √9a^4 + 3a^2
i) 5√4a^6 - 3a^3 với a<0
j) 3√(3-a)^2 - 2a với a>3
a)\(\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
b)\(\sqrt{\left(2-\sqrt{11}\right)^2}=2-\sqrt{11}\)
c)\(2\sqrt{a^2}=2a\) vì a≥0