Dặt ẩn phụ và giải phương trình: 4^x + 2^(x+1) -3=0
cứuuuuuuuu
x^4-2x^2-144x-1295=0
Giải hộ mình bằng cách dặt ẩn phụ vs
Bài làm
x4 - 2x2 - 144x - 1295 = 0
<=> x4 + 2x2 - 4x2 - 144x - 1296 + 1 = 0
<=> ( x4 + 2x2 + 1 ) - ( 4x2 + 144x + 1296 ) = 0
<=> ( x2 + 1 )2 - ( 2x + 36 )2 = 0
<=> ( x2 + 1 - 2x - 36 )( x2 + 1 + 2x + 36 ) = 0
<=> ( x2 - 2x - 35 )( x2 + 2x + 37 ) = 0
<=> ( x2 + 5x - 7x - 35 ) ( x2 + 2x + 1 + 36 ) = 0
<=> [ x( x + 5 ) - 7( x + 5 ) ][ ( x2 + 2x + 1 ) + 36 ] = 0
<=> ( x + 5 )( x - 7 )[ ( x + 1 )2 + 36 ] = 0
Ta có: ( x + 1 )2 \(\ge\)0
<=> ( x + 1 )2 + 36 \(\ge\)36
=> ( x + 5 )( x - 7 ) = 0
<=> \(\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\)
Vậy tập nghiệm phương trình trên là: S = { -5; 7 }
# Học tốt #
Bài này không nhất thiết phải đặt ẩn phụ nên mình giải luôn nhé.
\(x^4-2x^2-144x-1295=0\\ \Leftrightarrow x^4-4x^2+2x^2-144x+1-1296=0\\\Leftrightarrow \left(x^4+2x^2+1\right)-\left(4x^2+144x+1296\right)=0\\ \Leftrightarrow\left(x^2+1\right)^2-\left(2x+36\right)=0\\ \Leftrightarrow\left(x^2+1-2x-36\right)\left(x^2+1+2x+36\right)=0\\ \Leftrightarrow\left(x^2-2x-35\right)\left[\left(x+1\right)^2+36\right]=0\\\Leftrightarrow \left(x^2+5x-7x-35\right)\left[\left(x+1\right)^2+36\right]=0\\ \Rightarrow\left(x+5\right)\left(x-7\right)\left[\left(x+1\right)^2+36\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\left(vi\left[\left(x+1\right)^2+36>0\forall\right]x\right)\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-5;7\right\}\)
x4−2x2−144x−1295=0
⇔(x4+2x2+1)−(4x2+144x+1296)=0
⇔(x2+1)2−(2x+36)2=0
⇔(x2+1+2x+36)[x2+1−(2x+36)]=0
⇔(x2+2x+37)(x2−2x−35)=0
⇔(x2+5x−7x−35)(x2+2x+1+36)=0
⇔[x(x+5)−7(x+5)][(x+1)2+36]=0
⇔(x+5)(x−7)[(x+1)2+36]=0
Dễ thấy:(x+1)2+36≥36>0∀x (vô nghiệm)
⇒[x+5=0x−7=0
Giải phương trình bằng cách đặt ẩn phụ:
x + 1 x 2 - 4 . x + 1 x + 3 = 0
x + 1 x 2 - 4 . x + 1 x + 3 = 0 Đ ặ t t = x + 1 x
(1) trở thành: t2 – 4t + 3 = 0 (2)
Giải (2):
Có a = 1; b = -4; c = 3
⇒ a + b + c = 0
⇒ (2) có nghiệm t1 = 1; t2 = c/a = 3.
+ t = 1 ⇒ x + 1/x = 1 ⇔ x2 + 1 = x ⇔ x2 – x + 1 = 0
Có a = 1; b = -1; c = 1 ⇒ Δ = (-1)2 – 4.1.1 = -3 < 0
Phương trình vô nghiệm.
Giải phương trình bằng cách đặt ẩn phụ:
a ) 2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 b ) x + 1 x 2 − 4 ⋅ x + 1 x + 3 = 0
a) 2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )
Đặt x 2 – 2 x = t ,
(1) trở thành : 2 t 2 + 3 t + 1 = 0 ( 2 ) .
Giải (2) :
Có a = 2 ; b = 3 ; c = 1
⇒ a – b + c = 0
⇒ (2) có nghiệm t 1 = - 1 ; t 2 = - c / a = - 1 / 2 .
+ Với t = -1 ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1
(1) trở thành: t 2 – 4 t + 3 = 0 ( 2 )
Giải (2):
Có a = 1; b = -4; c = 3
⇒ a + b + c = 0
⇒ (2) có nghiệm t 1 = 1 ; t 2 = c / a = 3 .
+ t = 1 ⇒ x + 1/x = 1 ⇔ x 2 + 1 = x ⇔ x 2 – x + 1 = 0
Có a = 1; b = -1; c = 1 ⇒ Δ = ( - 1 ) 2 – 4 . 1 . 1 = - 3 < 0
Phương trình vô nghiệm.
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\).
ĐKXĐ: \(x\ge1\)
Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)
Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)
Phương trình trở thành:
\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)
\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)
\(\Leftrightarrow x-1=\sqrt{x^2-1}\)
\(\Rightarrow x^2-2x+1=x^2-1\)
\(\Rightarrow x=1\) (thỏa mãn)
Giải các phương trình sau bằng phương pháp đặt ẩn phụ: 3 x 2 + x + 1 – x = x 2 + 3
\(\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}-\sqrt{\dfrac{1}{1+\sqrt{2}}-x}\)
Giải phương trình bằng cách đặt ẩn phụ đưa về hệ phương trình
giải phương trình bằng cách đặt ẩn phụ
\(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
giúp mình với
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)
\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)
=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)
=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)
=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)
=>-x+1=0
=>x=1
Giải các phương trình sau bằng cách đặt ẩn số phụ x - x - 1 -3 = 0
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5