Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Trần
Xem chi tiết
Hoàng Ngọc Ý Thơ
Xem chi tiết
nguyen cong duy
Xem chi tiết
Nguyễn Đình Phúc
Xem chi tiết
Ben Tennyson
Xem chi tiết
ak123
Xem chi tiết
ak123
Xem chi tiết
Công Chúa Mai Hoa
Xem chi tiết
Luhan Hyung
30 tháng 10 2016 lúc 9:03

n=3 nha bạn

NHÉ

shitbo
14 tháng 11 2018 lúc 12:49

Câu này phải là số nguyên tố chứ 

Đẹp trai
Xem chi tiết
HT.Phong (9A5)
12 tháng 9 2023 lúc 10:28

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\) 

\(\Rightarrow n^2+2n+1+5=a^2\) 

\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)

\(\Rightarrow\left(n+1\right)^2+5=a^2\)

\(\Rightarrow a^2-\left(n+1\right)^2=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)

Ta có: \(a+n+1>a-n-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)

Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

Đẹp trai
12 tháng 9 2023 lúc 10:08

Giúp mình vs

Nguyễn Đức Trí
12 tháng 9 2023 lúc 10:26

\(n^2+2n+6\) là số chính phương

Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)

\(\Leftrightarrow4n^2+8n+24=4k^2\)

\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)

mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)

Vậy \(n=5\) thỏa mãn đề bài