phân tích thành nhân tử
x5-2x4+2x3-4x2-3x+6
phân tích đa thức: x4 + 2x3 + 4x2 + 3x + 2 thành nhân tử
Ta có:
\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)
\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)
phân tích thành nhân tử:
a) 2x4-2x3-9x2-3x-17
b) 4xy2+8xy+4y2
phân tích đa thức thành nhân thức
a, x2 - 2x + x - 2
b, 8x2 + 4x + 4
c, x3 + 4x2 + 2x4
\(a,=x\left(x-2\right)+\left(x-2\right)=\left(x+1\right)\left(x-2\right)\\ b,=4\left(2x^2+x+1\right)\\ c,=x^2\left(2x^2+x+4\right)\)
bài 1: Thực hiện phép tính
a/ (4x-3) (2x+5)
B/ (14X5y - 7x2y3 + 3X4y) :7x2y
c/ (2x3-3x2-11x +6):(x-3)
bài 2: Phân thức đa thức thành nhân tử
a/ x3-25x
b/ x2-2xy+3x-6y
c/ 8x3+4x2-6x-27
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
phân tích đa thức thành nhân tử 3x^6+2x4-8x^3+2x^2-4x+3
Phân tích các đa thức sau thành nhân tử:
a) 4x2-4x+1
b)16y3-2x3-6x(x+1)-2
c)x2-6xy-25z2+9y2
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b
Phân tích các đa thức sau thành nhân tử:
a/ 2x3 + 3x2 + 2x +3 b/ x2 – x – 12 c/ 4x2 –( x2 + 1)2
d/ 4xy2 – 12x2y + 8xy e/ x2 + x – 6 f/ x3 + 2x2y + xy2 – 4xz2
g/ x3 – 2x2y + xy2 – 25x h/ x2 – 2x – 3 i/ x3 – 3x2 – 9x + 27
a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x^2+1\right)\)
b: \(=\left(x-4\right)\left(x+3\right)\)
e: =(x+3)(x-2)
a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)
b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)
c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=4xy\left(y-3x+2\right)\)
e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)
g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)
i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)
phân tích đa thức thành nhân tử
2x^2+5x+2
4x2-4x-9y2+12y-3
x4-2x3-4x2+4x-3
x3-x+3x2y+3xy2+y3-y
a) \(2x^2+5x+2\)
\(=2x^2+4x+x+2\)
\(=2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(2x+1\right)\)
b) \(4x^2-4x-9y^2+12y-3\)
\(=\left(4x^2-4x+1\right)-\left(9y^2-12y+4\right)\)
\(=\left(2x-1\right)^2-\left(3y-2\right)^2\)
\(=\left(2x-1+3y-2\right)\left(2x-1-3y+2\right)\)
\(=\left(2x+3y-3\right)\left(2x-3y+1\right)\)
c) \(x^4-2x^3-4x^2+4x-3\)
\(=x^4+x^3-x^2+x-3x^2-3x+3x-3\)
\(=\left(x^4+x^3-x^2+x\right)-\left(3x^2+3x-3x+3\right)\)
\(=x\left(x^3+x^2-x+1\right)-3\left(x^3+x^2-x+1\right)\)
\(=\left(x^3+x^2-x+1\right)\left(x-3\right)\)
d) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Tìm nghiệm:
a)2x4-3x3-6x2-x+2=0
b)x4-2x3+4x2-3x-1=0