hãy giải phương trình
(x+9)(x+10)(x+11)(x+12)=170
Giải phương trình sau: 8/x-8+11/x-11=9/x-9+10/x-10
\(\dfrac{8}{x}-8+\dfrac{11}{x}-11=\dfrac{9}{x}-9+\dfrac{10}{x}-10\)\(\Leftrightarrow\dfrac{8}{x}+\dfrac{11}{x}-\dfrac{9}{x}-\dfrac{10}{x}=8+11-9-10\)
\(\Leftrightarrow\dfrac{8+11-9-10}{x}=0\)
\(\Leftrightarrow\dfrac{0}{x}=0\)
\(\Leftrightarrow x=0\)
S=\(\left\{0\right\}\)
Câu 11 giải phương trình:
a, x+5/13+x+6/12+x+7/11=x+8/10+x+9/9+x+10
Giúp mình mới minh cần gấp nhé !!?
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Leftrightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}\right)\)
\(\Leftrightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
ta chuyển về vế trái được
\(\Leftrightarrow\left(x+18\right)\left(\frac{1}{13}+\frac{1}{122}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
\(\Leftrightarrow x+2018=0\)(do cái còn lại khác 0)
\(\Leftrightarrow x=-2018\)
mình nghĩ đề cậu viết thiếu mình sửa rồi
Ta có:
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Rightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}+1\right)\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}-\frac{x+18}{10}-\frac{x+18}{9}-\frac{x+18}{8}=0\)
\(\Rightarrow\left(x+18\right)\times\left(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
Vì \(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\ne0\)
\(\Rightarrow x+18=0\)
\(\Rightarrow x=-18\)
Vậy phương trình có nghiệm là x = -18
xin lỗi vì tớ nhầm một chút ở dòng cuối cho mình xin lỗi nhé
1) tìm số tự nhiên x thõa mãn
1/x + 2015/2 x6+014 = 2014/2013 + 1/x+1
2)giải phương trình
x(1975/8*9 + 1885/9*10 + 1755/10*11 + 1579/11*12 + 6)=1/24
Giải phương trình: (x+9)(x+10)(x+11)-8x =0
a) Giải phương trình: (x - 187)/13 + (x - 170)/15 + (x - 149)/17 + (x - 124)/19 = 10
\(\dfrac{x-187}{13}+\dfrac{x-170}{15}+\dfrac{x-149}{17}+\dfrac{x-124}{19}=10\)
`<=>(x-187)/13+(x-170)/15+(x-149)/17+(x-124)/19-10=0`
`<=>(x-187)/13-1+(x-170)/15-2+(x-149)/17-3+(x-124)/19-4=0`
`<=>(x-200)/13+(x-200)/15+(x-200)/17+(x-200)/19=0`
`<=>(x-200)(1/13+1/15+1/17+1/19)=0`
`<=>x-200=0(1/13+1/15+1/17+1/19>0)`
`<=>x=200`
\(=>\left(\dfrac{x-187}{13}-1\right)+\left(\dfrac{x-170}{15}-2\right)+\left(\dfrac{x-149}{17}-3\right)+\left(\dfrac{x-124}{19}-4\right)=0\)\(< =>\left(\dfrac{x-187}{13}-\dfrac{13}{13}\right)+\left(\dfrac{x-170}{15}-\dfrac{30}{15}\right)+\left(\dfrac{x-149}{17}-\dfrac{51}{17}\right)+\left(\dfrac{x-124}{19}-\dfrac{76}{19}\right)=0\)
\(< =>\left(\dfrac{x-200}{13}\right)+\left(\dfrac{x-200}{15}\right)+\left(\dfrac{x-200}{17}\right)+\left(\dfrac{x-200}{19}\right)=0\)
\(< =>\left(x-200\right)\left(\dfrac{1}{13}+\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}\right)=0\)
\(< =>x-200=0\)
<=>x=200
=>\(\left(\dfrac{x-187}{13}-1\right)+\left(\dfrac{x-170}{15}-2\right)+\left(\dfrac{x-149}{17}-3\right)+\left(\dfrac{x-124}{19}-4\right)=0\)
=>x-200=0
=>x=200
giải phương trình sau : (149-x)/25+(170-x)/23+(187-x)/21+(200-x)/19=10
\(\frac{149-x}{25}+\frac{170-x}{23}+\frac{187-x}{21}+\frac{200-x}{19}=10\)
\(\Rightarrow\frac{149-x}{25}-1+\frac{170-x}{23}-2+\frac{187-x}{21}-3+\frac{200-x}{19}-4=0\)
\(\Rightarrow\frac{124-x}{25}+\frac{124-x}{23}+\frac{124-x}{21}+\frac{124-x}{19}=0\)
\(\Rightarrow\left(124-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
Mà \(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}>0\Rightarrow x-124=0\Rightarrow x=124\)
Giải các phương trình sau ( biếnđổi đặc biệt)
(x+6)/1999 +(x+8)/1997=(x+10)/1995+(x+12)/1993
(x-85)/15 + (x-74)/13 +(x-67)/11 + (x-64)/9 =10 (chú ý 10=1+2+3+4 )
Giải bất phương trình sau: \(\dfrac{x^2-26}{10}\)+\(\dfrac{x^2-25}{11}\) \(\ge\) \(\dfrac{x^2-24}{12}\)+\(\dfrac{x^2-23}{13}\)
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
cho A là nghiệm của phương trình
\(\frac{x-7}{x-8}-\frac{x-8}{x-9}=\frac{x-10}{x-11}-\frac{x-11}{x-12}.\)
Tìm 6A
\(\frac{x-7}{x-8}-\frac{x-8}{x-9}=\frac{x-10}{x-11}-\frac{x-11}{x-12}\)
\(\frac{x-7}{x-8}-\frac{x-8}{x-9}-\frac{x-10}{x-11}+\frac{x-11}{x-12}=0\)
Rồi còn lại làm típ