Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Việt Hà
Xem chi tiết
nguyễn thị thanh loan
Xem chi tiết
Ngô Tú Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2023 lúc 21:13

a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: góc AKH=1/2*sđ cung AB

góc AHK=góc BHD=góc BCE=1/2*sđ cung AB

=>góc AKH=góc AHK

=>ΔAHK cân tại A

Bui Cong THanh
Xem chi tiết
Hồ Lê Nhã Vy
23 tháng 5 2020 lúc 20:23

Đéo biết

Khách vãng lai đã xóa
Thanh Hải
Xem chi tiết
Nguyễn Hoàng Bách
Xem chi tiết
Truong Ngo Tho
Xem chi tiết
Nguyễn Tất Đạt
20 tháng 7 2019 lúc 9:19

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

Phan Tiến Ngọc
Xem chi tiết
Nguyễn Hoàng Khánh Linh
Xem chi tiết
hien
29 tháng 9 2017 lúc 12:42

Cho đường tròn tâm O bán kính R và dây AB ko qua O gọi I là trung điểm của AB tiếp tuyến tại Q của đường tròn tâm O cắt đường thẳng OI tại S a/ CmmSB là tiếp tuyến đường tròn tâm O b/cho bik R=5cm AB =8cm Tính độ dài tiếp tuyến SA giai giup minh bai nay duoc ko