(5x-1).3_2=70
1) Cho pt \(3x^2+5x-6=0\) có 2 nghiệm \(x_1,x_2\) (không giải pt)
Tính giá trị biểu thức \(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\)
2) Cho pt \(3x^2-5x-3=0\) có nghiệm \(x_1,x_2\) ( không giải pt)
Tính giá trị biểu thức \(B=x^3_1.x_2+x_1.x^3_2\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
3. (5x -1) - 2 =70
\(3\left(5^x-1\right)-2=70\\ \Rightarrow3.5^x-3-2=70\\ \Rightarrow3.5^x-5=70\\ \Rightarrow3.5^x=75\\ \Rightarrow5^x=25\\ \Rightarrow x=2\)
\(3.\left(5^x-1\right)-2=70\)
\(\Leftrightarrow3.\left(5^x-1\right)=70+2\)
\(\Leftrightarrow3.\left(5^x-1\right)=72\)
\(\Leftrightarrow5^x-1=72:3\)
\(\Leftrightarrow5^x-1=24\)
\(\Leftrightarrow5^x=24+1\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Cho \(a_1;a_2;a_3;a_4\ne0\). Biết \(a^2_2=a_1.a_3;a^2_3=a_2.a_4\)và \(a^3_2+8a^3_3+125a_4^3\ne0\)
CMR: \(\dfrac{a_1}{a_4}=\dfrac{a_1^3+8a^3_2+125a_3^3}{a^3_2+8a_3^3+125a^3_4}\)
\(\left\{{}\begin{matrix}a^2_2=a_1a_3\\a^2_3=a_2a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\\\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=t\)
\(\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=t.t.t=\dfrac{a_1}{a_4}=t^3\left(1\right)\)
Ta có:\(\left\{{}\begin{matrix}\dfrac{a^3_1}{a^3_2}=t^3\\\dfrac{8a^3_2}{8a^3_3}=t^3\\\dfrac{125a^3_3}{125a^3_4}=t^3\end{matrix}\right.\) \(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{8a^3_2}{8a^3_3}=\dfrac{125a^3_3}{125a^3_4}=\dfrac{a^3_1+8a^3_2+125a^3_3}{a^3_2+8a^3_3+125a^3_4}=t^3\)
Ta có đpcm
Ta có: \(a_2^2=a_1.a_3\Leftrightarrow a_2.a_2=a_1.a_3\Leftrightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\left(1\right)\)
\(a_3^2=a_2.a_4\Leftrightarrow a_3.a_3=a_2.a_4\Leftrightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\left(2\right)\)
Từ
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{a_1^3}{a^3_2}=\dfrac{8a_2^3}{8a^3_3}=\dfrac{125a_3^3}{125a^3_4}=\dfrac{a_1^3+8a_2^3+125a^3_3}{a^3_2+8a^3_3+125a^3_4}\left(3\right)\)
Ta lại có: \(\dfrac{a_1^3}{a^3_2}=\left(\dfrac{a_1}{a_2}\right)^3=\dfrac{a_1}{a_2}\cdot\dfrac{a_1}{a_2}.\dfrac{a_1}{a_2}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\dfrac{a_1}{a_4}=\dfrac{a_1^3+8a_2^3+125a_3^3}{a^3_2+8a_3^3+125a^3_4}\left(dpcm\right)\)
Vậy ....
Tìm x
12(x – 1) = 0
45 + 5(x – 3) = 70
3.x – 18 : 2 = 12
5x + 2x = 62 - 50
5x + x = 150 : 2 + 3
\(a,12\left(x-1\right)=0\\ x-1=0\\ x=1\\ b,45+5\left(x-3\right)=70\\ 5\left(x-3\right)=25\\ x-3=5\\ x=8\\ c,3.x-18:2=12\\ 3.x-9=12\\ 3.x=21\\ x=7\)
12(x-1)=0
(x-1)=0:12
x-1=0
x=0+1
x= 1
Vậy x= 1
12 ( x - 1 ) = 0
x - 1 = 0 : 12
x - 1 = 0
=> x = 1
\(x^2+mx-1=0\)
tìm m để pt có 2 nghiệm phân biệt thỏa mãn \(x^3_1+x^3_2=-4\)
\(\Delta=m^2+4>0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
\(x_1^3+x_2^3=-4\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)
\(\Leftrightarrow-m^3-3m=-4\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m=1\)
\(\Delta=m^2-4.1.\left(-1\right)=m^2+4>0\) suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
\(x^3_1+x^3_2=-4\\ \Leftrightarrow\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x_2^2\right)=-4\\ \Leftrightarrow-m\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=-4\\ \Leftrightarrow m\left[\left(-m\right)^2-3.\left(-1\right)\right]=4\\ \Leftrightarrow m\left(m+3\right)-4=0\\ \Leftrightarrow m^2+3m-4=0\\ \Leftrightarrow m^2+4m-m-4=0\\ \Leftrightarrow m\left(m+4\right)-\left(m+4\right)=0\\ \Leftrightarrow\left(m+4\right)\left(m-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-4\\m=1\end{matrix}\right.\)
chứng minh rằng :1/3_2/3^2+3/3^3_4/3^4+......+99/3^99_100/3^100<3/16
Giá trị của biểu thức A = \(\frac{1}{3}+\frac{1}{3_2}+\frac{1}{3_3}+.......+\frac{1}{3_6}\) là...........
{ -3,2} . -15/64 + 0,8 - 2_4/15 : 3_2/3
Bạn viết lại đề bài được không mình chưa rõ ý bạn?
tìm x biết a, |2x - 1| = 5x, ( 5x - 1).3 - 2 = 70 ;
giúp tôi với mọi người ơi
(5x-1)3-2=70
<=>(5x-1).3=70+2=72
<=>5x-1=72:3
<=>5x-1=24
<=>5x=24+1=25
<=>5x=25:5=5
de vay sao ban k lam
2x-1=5x
2x-1= -5x
tu lam tiep
l2x-1l=5x
TH1: 2x-1=5x <=> 2x-5x=1<=>-3x=1<=>x=-1/3
TH2:2x-1=-5x<=>2x+5x=1<=>7x=1<=>x=1/7