a) Chứng minh AMON là tứ giác nội tiếp
b) CHứng minh AN2 = AB . AC
c) Gọi I là trung điểm BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh: MT // AC
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN\(^2\)=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔANB và ΔACN có
góc ANB=góc ACN
góc NAB chung
=>ΔANB đồng dạng với ΔACN
=>AN^2=AB*AC
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
Giúp mình với đang cần gấp lắm!!
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔANB và ΔACN có
góc ANB=góc ACN
góc NAB chung
=>ΔANB đồng dạng với ΔACN
=>AN^2=AB*AC
Kẻ hộ mk hình Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (BC không đi qua O, B nằm giữa A và C). Từ A kẻ các tiếp tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm, M thuộc mặt phẳng bờ AC có chứa điểm O), gọi H là trung điểm của BC.
Cho đường tròn (O) và đường thẳng (d) cắt đường tròn (O) tại hai điểm M; N ( đường thẳng (d) không đi qua O). Lấy điểm A thuộc đường thẳng (d) (A nằm ngoài đường tròn). Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm).a) Chứng minh đường tròn ngoại tiếp tam giác ABC luôn đi qua hai điểm cố định khi A di chuyển trên (d).b) Kẻ tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại P. Chứng minh B; C; P thẳng hàng.c) Kẻ đường kính BOD, đường thẳng qua O vuông góc với BD cắt CD tại E. Chứng minh AOCE là hình thang cân
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếng tuyến AM và AN tới đường tròn (M,N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O;R) tại B và C (AB<AC). Gọi I là trung điểm của BC.
Đường thẳng đi qua B, song song với AM, cắt MN tại E. CMR: IE song song MC
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ hai tiếp tuyến AM,AN với đường tròn (O) (M,N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C( AB<AC,d không qua tâm O) . I là trung điểm BC, đường thẳng qua B // AM cắt MN tại E
a) . A, M, O, I, N thuộc ( O )
b) . AB.AC = AM.AM
c) . IE // MC
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng qua A và không đi qua tâm O, cắt đường tròn tại 2 điểm phân biệt M, N (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN.
a) Chứng minh tứ giác ACOI là tứ giác nội tiếp.
b) Chứng minh OI.OE = OH.OA = AC2.
c) Tính theo R độ dài của OA biết diện tích của tứ giác ABOC bằng 3R2.
b bic làm bài này hok z
giúp mik vs ạ
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp.
b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp. b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔAKM và ΔAMI có
góc AMK=góc AIM
góc MAK chung
=>ΔAKM đồng dạng với ΔAMI
=>AK/AM=AM/AI
=>AM^2=AI*AK
Xét ΔABM và ΔAMC có
góc AMB=góc ACM
góc BAM chung
=>ΔABM đồng dạng với ΔAMC
=>AB/AM=AM/AC
=>AM^2=AB*AC=AK*AI