Chứng minh với mọi giá trị của m, đường thằng (d): y=(4-3m)x-m+1 luôn đi qua một điểm cố định
Chứng minh rằng đường thẳng (d): y = (3m+1) x -2m +5 luôn luôn đi qua một điểm cố định với mọi giá trị của tham số m.
y=(3m+1)x-2m+5
=3mx+x-2m+5
=m(3x-2)+x+5
Điểm mà (d) luôn đi qua có tọa độ là:
3x-2=0 và y=x+5
=>x=2/3 và y=5+2/3=17/3
Cho hàm số bậc nhất y=(2m - 1)x - 3m + 5 có đồ thị la đường thẳng d chứng minh đường tẳng d luôn đi qua 1 điểm cố định với mọi giá trị của m
gọi A{x0,y0 } là điểm cố định
thay A vào d ta có:
y0=(2m-1)x0-3m+5\(\Rightarrow\)y0-(2m-1)x0+3m+5=0\(\Leftrightarrow\)y0-2mx0+x0+3m+5=0
\(\Leftrightarrow\)m(3-2x0)+(y0+x0+5)=0\(\Leftrightarrow\left\{{}\begin{matrix}3-2x_0=0\\y_0+x_0+5=0\end{matrix}\right.\)(đồng nhất thức)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=-\dfrac{13}{2}\end{matrix}\right.\)
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
(P): y=\(\dfrac{x^2}{2}\) (d): y=mx+m+5
a)Chứng minh đường thẳng (d) luôn đi qua một điểm cố định với mọi giá trị m và tìm tọa độ điểm cố định đó.
b)Đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt
Chứng minh rằng đường thăng (d): mx+(2m-1)y+3=0 ( m là tham số ) luôn đi qua một điểm cố định với mọi giá trị của m.
Cho hàm số y=mx+2m+1(d). Chứng minh rằng với mọi giá trị của m thì học đường thẳng d luôn đi qua 1 điểm cố định. Hãy xác định điểm cố định đó.
Cho hai đường thẳng (d1):y=m(x+3) và (d2):y=(4m-5)x+3m
a.Tìm tất cả giá trị của m để hai đường thẳng vuông góc với nhau
b.Chứng minh rằng với mọi giá trị của m thì (d2) luôn đi qua một điểm cố định
Để hai đường thẳng vuông góc :
\(\Leftrightarrow m\left(4m-5\right)=-1\Leftrightarrow4m^2-5m+1=0\Rightarrow\orbr{\begin{cases}m=1\\m=\frac{1}{4}\end{cases}}\)
b ) Gọi điểm cố định mà \(d_2\) đi qua là M \(\left(x_0;y_0\right)\)
\(\Rightarrow y_0=\left(4m-5\right)x_0+3m\forall m\)
\(\Leftrightarrow m\left(4x_0+3\right)-\left(5x_0+y_0\right)=0\)
\(\Rightarrow\hept{\begin{cases}4x_0+3=0\\5x_0+y_0=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=-\frac{3}{4}\\y_0=\frac{15}{4}\end{cases}\Rightarrow}M\left(-\frac{3}{4};\frac{15}{4}\right)}\)
Cho đường thẳng (d): y= (m+1)x +2m -3. Chứng minh rằng với mọi m đường thẳng (d) luôn luôn đi qua một điểm cố định. Xác định điểm cố định đó.
Cho phương trình (m - 2)x + (m - 1)y = 1 (m là tham số). Chứng minh rằng đường thẳng biểu diễn tập nghiệm của phương trình này luôn đi qua một điểm cố định với mọi giá trị của m.