cho tam giác ABC có AH là đường cao. Chứng minh \(AB^n+AC^n< AH^n+BC^n\) (với n là số nguyên dương)
cho tam giác ABC có AH là đường cao. Chứng minh \(AB^n+AC^n< AH^n+BC^n\) (với n là số nguyên dương)
cho tam giác ABC vuông có AH là đường cao. Chứng minh \(AB^n+AC^n< AH^n+BC^n\) (với n là số nguyên dương)
Cho tam giác ABC có ba góc nhọn (AB < AC) , đường cao AH Gọi M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, MN, cắt AH tại I
a) Chứng minh I là trung điểm của AH
b) Lấy điểm Q đối xứng với P qua N Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN
d) Gọi K là trung điểm của MN, O là giao điểm của CK và PQ , F là giao điểm của MN và QC Chứng minh B,O,F thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó:I là trung điểm của AH
Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh: \(AB^n+AC^n< AH^n+BC^n\)
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
cutsgrrrrrrrrrrrcccc5gcbvj4545651253
giúp mik câu d với
Cho tam giác ABC vuông tại A (AB<AC), AH đường cao ( H∈∈BC)
a. tam giác HBA đồng dạng tam giác ABC
b. AB=15cm, BC=25 cm. HB=?
c. BD//AC (D thuộc AH). chứng minh: HA.HB=HC.HB
d. M là trung điểm BD, N là trung điểm AC. Chứng minh M,H,N thẳng hàng
a/
Xét tg vuông HAB và tg vuông ABC có
\(\widehat{HAB}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAB đồng dạng với tg ABC (g.g.g)
b/ Xét tg vuông ABC có
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\)
c/ Đề bài sai sửa thành HA.HB=HC.HD
Xét tg vuông HBD và tg vuông HAC có
BD//AC (gt) \(\Rightarrow\widehat{HBD}=\widehat{HCA}\) (góc so le trong)
=> tg HBD đồng dạng với tg HAC
\(\Rightarrow\dfrac{HD}{HA}=\dfrac{HB}{HC}\Rightarrow HA.HB=HC.HD\)
d/
Xét tg vuông HAC, nối HN có
AN=CN (gt) => \(HN=AN=CN=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg NHC cân tại N \(\Rightarrow\widehat{NHC}=\widehat{NCH}\) (góc ở đáy tg cân) (1)
Xét tg vuông HBD, nối HM có
BM=DM (gt) => \(HM=BM=DM=\dfrac{BD}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg MBH cân tại M => \(\widehat{MBH}=\widehat{MHB}\) (góc ở đáy tg cân) (2)
Mà BD//AC (gt) \(\Rightarrow\widehat{NCH}=\widehat{MBH}\) (góc sole trong ) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{NHC}=\widehat{MHB}\)
Mà \(\widehat{NHC}+\widehat{BHN}=\widehat{BDC}=180^o\)
\(\Rightarrow\widehat{MHB}+\widehat{BHN}=\widehat{MHN}=180^o\) => M; H; N thẳng hàng
Cho tam giác ABC, AB<AC<BC, M, N lần lượt là trung điểm của AB, AC , AH là đường cao
a) So sánh các góc trong tam giác ABC
b) Chứng minh rằng tam giác AMN = tam giác HMN
c) Chứng minh MN vuông góc với AH
Cho tam giác ABC có đường cao AH.Biết AC = 9cm,AB = 12cm,BC = 15cm.Lấy M,N lần lượt là trung điểm của AH và BH.
a)Chứng minh tam giác ABC vuông tại A.
b)Chứng minh tam HNM đồng dạng với tam giác ABC