So sánh A=1/1.2+1/2.3+1/3.4+...+1/2019.2020+1/2020.2021 với 1
So sánh \(\dfrac{2019.2020-1}{2019.2020}\) và \(\dfrac{2020.2021-1}{2020.2021}\)
Giải:
Ta có:
2019.2020-1/2019.2020= 2019.2020/2019.2020 - 1/2019.2020
=1-1/2019.2020
Tương tự:
2020.2021-1/2020.2021= 1-1/2020.2021
Vì 1/2019.2020 > 1/2020.2021 nên -1/2019.2020 < -1/2020.2021
(vì là số nguyên âm)
⇒ 1-1/2019.2020 < 1-1/2020.2021
⇔ 2019.2020-1/2019.2020 < 2020.2021-1/2020.2021
Chúc bạn học tốt!
Cho A=1/1.2+1/2.3+1/3.4+1/4.5+...+1/2018.2019+1/2019.2020 thì A có giá trị là ?
Giúp mình với ạ mình đang cần gấp í:)
\(\text{#}HaimeeOkk\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)
\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)
\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)
\(A=1-\dfrac{1}{2020}\)
\(A=\dfrac{2019}{2020}\)
Vậy \(A=\dfrac{2019}{2020}\)
Trả lời dùm nha C:
M = 1/1.2 + 1/2.3 + 1/3.4 + 1/3.4 + ... + 1/2019.2020M =1/1.2+1/2.3+1/3.4+.......+1/2019.2020
=1-1/2+1/2-1/3+1/3-1/4+.......-1/2019+1/2019-1/2020
=1-1/2020
=2019/2020
Tính tổng :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{2020.2021}+\dfrac{1}{2021.2022}\)
Dấu chấm là dấu nhân
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.
=1/1-1/2022
=2021/2022
So sánh A = 1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100 .Với 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
Ta có: \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
=>\(A=1-\frac{1}{100}\)
Vì \(\frac{1}{100}>0\Rightarrow\)\(1-\frac{1}{100}< 1\)hay A<1
\(CMR\)\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}< 1\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
\(A=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(=>ĐPCM\)
Ta chứng minh được \(\frac{1}{m\left(m+1\right)}=\frac{m+1-m}{m\left(m+1\right)}=\frac{m+1}{m\left(m+1\right)}-\frac{m}{m\left(m+1\right)}=\frac{1}{m}-\frac{1}{m+1}\)
Ta có \(\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
.....
\(\frac{1}{2019.2020}=\frac{1}{2019}-\frac{1}{2020}\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
=>\(A=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\)
So sánh 1/1.2 + 1/2.3 + 1/3.4 +....+ 1/49.50 với 1
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}
Ta có : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50 < 1
Nên 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 < 1
tính giá trị của biểu thức
A=4/1.2 + 4/2.3 + 4/3.4 + ... + 4/2019.2020
B=1/1.2.3 + 1/2.3.4 + 1/3.4.5 +... + 1/98.99.100
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)
\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)
Vậy \(A=\frac{2019}{505}.\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Vậy \(B=\frac{4949}{19800}.\)
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)
\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)
Đến đây tự tính
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
Số hơi bị dữ nên tính nốt nhé
a) \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+........+\frac{4}{2019.2020}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2019.2020}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=4.\left(1-\frac{1}{2020}\right)=4.\frac{2019}{2020}=\frac{2019}{505}\)