1so sanh \(y=\frac{10^6+1}{10^{5+1}}\)va \(y\frac{10^{7+1}}{10^{6+1}}\)2x
so sanh \(y=\frac{10^{6+1}}{10^{5+1}}\)va \(y=\frac{10^{7+1}}{10^{6+1}}\)
so sanh \(y\frac{10^{6+1}}{10^{5+1}}\)va\(y\frac{10^{7+1}}{10^{6+1}}\)
so sanh cac phan so sau: 10^6+1/10^5+1 va 10^7+1/10^6+1
so sanh 2 PS sau
\(\frac{7^{10}+1}{7^{10}-1}\)va \(\frac{7^{10}-1}{7^{10}-3}\)
1so sanh cac phan so sau
a,2/3 va -1/4
b -7/10 va 7/-8
c 6/7 va 3/5
d -14/21 va 60/-72
e 16/9 va24/13
g 27/82 va 26/75
So sanh A va B biet rang:
\(A=\frac{10^{15}+1}{10^{16}+1}\) \(B=\frac{10^{16}+1}{10^{17}+1}\)
TOÁN 6 NHA
Trước hết ta so sánh 10A và 10B
Ta có:
\(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì: \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B
Ta thấy:B<1 vì 1015+1<1016+1
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A
trước hết ta so sánh 10A và 10B
10A =10^16+10/10^16+1 10B=10^17+10/10^17+1
10A=1+9/10^16+1 10B=1+9/10^17 +1
mà 1=1;9/10^16+1>9/10^17+1 nên 10A>10B nên A>B
\(y=\frac{6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}}{4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}}\)=?
\(=\frac{6\times\frac{5}{3}-\frac{7}{6}\times\frac{6}{7}}{\frac{21}{5}\times\frac{10}{11}+\frac{57}{11}}=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}=\frac{9}{\frac{99}{11}}\)=1
1)vTim x;y biet: a) \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
b) \(x\left(x-y\right)=\frac{3}{10}\)va \(y\left(x-y\right)=\frac{-3}{50}\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)