Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Huy Hoàng
Xem chi tiết
Trịnh Thảo Chi
Xem chi tiết
Nguyễn Đức Trí
5 tháng 9 2023 lúc 17:58

a) Vì \(\left\{{}\begin{matrix}6n⋮3\\6n+2=2\left(3n+1\right)⋮2\\6n-2=2\left(3n-1\right)⋮2\\6n\pm3=3\left(n\pm1\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(6n;6n\pm2;6n\pm3\right)\) là các hợp số

Nên \(n>3\) thì các số nguyên tố có thể là \(6n+1\) hoặc \(6n-1\)

b) \(6n+1\) hoặc \(6n-1\left(n\inℕ^∗\right)\) không đêu là số nguyên vì \(6.4+1=25\left(n=4\right)\) là hợp số.

đỗ quỳnh trang
Xem chi tiết
doremon
30 tháng 10 2014 lúc 21:18

a) Mọi số tự nhiên m > 3 đều viết được một trong các dạng :

               6n - 2 ; 6n - 1 ; 6n ; 6n + 1 ; 6n + 2 ; 6n + 3 (n thuộc N*)

Trong các số trên , các số 6n - 2 ; 6n ; 6n + 2 ; 6n + 3 là hợp số . 

Vậy số nguyên tố lớn hơn 3 có dạng 6n - 1 và 6n + 1.(n thuộc N*)

b) không . Ví dụ 6 . 4 + 1= 25 là hợp số 

 

 

Vũ Hải Đăng
9 tháng 9 2018 lúc 20:11

uululjuljguljgguljgghuljgghuuljgghuguljgghugyuljgghugytuljgghugytuuljgghugytuuuljgghugytuuuuljgghugytuuuuuljgghugytuuuuuuljgghugytuuuuuiuljgghugytuuuuuiiuljgghugytuuuuuiiduljgghugytuuuuuiidtuljgghugytuuuuuiidtu tththhthhgthhgfthhgfcthhgfcg\(\orbr{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\phi^{ }}\)

hikari
Xem chi tiết
NGUYỄN NAM KHÁNh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2018 lúc 9:11

1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3

  Với mọi trường hợp số dư là 1 ta có  A =  4 n   ±   1

  Với trường hợp số dư là 3 ta có A =  6 n   ±   1

Ta có thể viết  A = 4m + 4 – 1

                           =  4(m + 1) – 1

Đặt  m + 1 = n, ta có  A = 4n – 1

2.     Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số

Trường hợp dư 1 thì  A = 6n + 1

Trường hợp dư 5 thì   A = 6m + 5    

                                       = 6m + 6 – 1

                                       6(m + 1 ) – 1

Đặt m + 1 = n     Ta có  A = 6n – 1

Dung Viet Nguyen
Xem chi tiết
Dung Viet Nguyen
17 tháng 11 2017 lúc 13:32

Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).

b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .

=> ( đpcm ).

đỗ quỳnh trang
Xem chi tiết
Anh Nam Minh
24 tháng 7 2017 lúc 20:50

dễ bằng mình ko biết mình học lớp 5 mà

đinh thiên tường
Xem chi tiết