Tính \(M=\sqrt{1+2009^2+\dfrac{2009^2}{2010^2}}+\dfrac{2009}{2010}\)
Chứng minh đẳng thức:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=1-\dfrac{\sqrt{2010}}{2010}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)
\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
\(\dfrac{x+1}{2010}+\dfrac{x+2}{2009}+\dfrac{x-3}{2008}+...+\dfrac{x-2009}{2}+\dfrac{x-2010}{1}=-2010\)
\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)
=>x+2011=0
hay x=-2011
Bài 2 : So sánh
\(A=\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}vàB=\dfrac{2008+2009+2010}{2009+2010+2011}\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
Tính:
1) A=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
2) B=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2006}+\sqrt{2007}}\)
Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào
a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)
b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)
Bài 2 : So sánh
\(A=\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}vàB=\dfrac{2008+2009+2010}{2009+2010+2011}\)
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
Tìm x, biết: \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
Đặt \(\left\{{}\begin{matrix}x-2010=a\\2009-x=b\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{b^2+ab+a^2}{b^2-ab+a^2}=\dfrac{19}{49}\)
\(\Leftrightarrow19\left(b^2-ab+a^2\right)=49\left(b^2+ab+a^2\right)\)
\(\Leftrightarrow19b^2-19ab+19a^2-49b^2-49ab-49a^2=0\)
\(\Leftrightarrow-30a^2-68ab-30b^2=0\)
\(\Leftrightarrow-2\left(15a^2+34ab+15b^2\right)=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow15a^2+25ab+9ab+15b^2=0\)
\(\Leftrightarrow5a\left(3a+5b\right)+3b\left(3a+5b\right)=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a+5b=0\\5a+3b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(x-2010\right)+5\left(2009-x\right)=0\\5\left(x-2010\right)+3\left(2009-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-6030+10045-5x=0\\5x-10050+6027-3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+4015=0\\2x-4023=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4015\\2x=4023\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4015}{-2}=2007,5\\x=\dfrac{4023}{2}=2011,5\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=2007,5\\x=2011,5\end{matrix}\right.\)
Đặt a=(2009-x)2
b=(x-2010)2
Theo đề bài ta có
\(\dfrac{\text{a^2+ab+b^2}}{a^2-ab+b^2}=\dfrac{19}{49}\)
\(\text{49(a^2+ab+b^2)}=19\left(a^2-ab+b^2\right)\)
\(\text{30a^2+68ab+30b^2=0}\)
\(\text{15a^2+34ab+15b^2=0}\)
\(\text{15a^2+9ab+25ab+15b^2=0}\)
\(\text{3a(5a+3b)+5(3b+5a)=0}\)
\(\text{(5a+3b)(3a+5b)=0}\)
\(\left[{}\begin{matrix}3a+5b=0\\3b+5a=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3\left(2009-x\right)=5\left(x-2010\right)\\5\left(2009-x\right)=3\left(x-2010\right)\end{matrix}\right.\)
\(-8x=-6030-10045\) hay \(8x=-10050-6027\)
\(x\simeq2009\),375 hay \(x\simeq2009,625\)
Đặt {x−2010=a2009−x=b{x−2010=a2009−x=b
Theo đề bài ta có:
(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949
⇔b2+ab+a2b2−ab+a2=1949⇔b2+ab+a2b2−ab+a2=1949
⇔19(b2−ab+a2)=49(b2+ab+a2)⇔19(b2−ab+a2)=49(b2+ab+a2)
⇔19b2−19ab+19a2−49b2−49ab−49a2=0⇔19b2−19ab+19a2−49b2−49ab−49a2=0
⇔−30a2−68ab−30b2=0⇔−30a2−68ab−30b2=0
⇔−2(15a2+34ab+15b2)=0⇔−2(15a2+34ab+15b2)=0
⇔15a2+34ab+15b2=0⇔15a2+34ab+15b2=0
⇔15a2+25ab+9ab+15b2=0⇔15a2+25ab+9ab+15b2=0
⇔5a(3a+5b)+3b(3a+5b)=0⇔5a(3a+5b)+3b(3a+5b)=0
⇔(3a+5b)(5a+3b)=0⇔(3a+5b)(5a+3b)=0
⇔[3a+5b=05a+3b=0⇔[3a+5b=05a+3b=0
⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0
⇔[3x−6030+10045−5x=05x−10050+6027−3x=0⇔[3x−6030+10045−5x=05x−10050+6027−3x=0
⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023
⇔⎡⎢ ⎢⎣x=−4015−2=2007,5x=40232=2011,5⇔[x=−4015−2=2007,5x=40232=2011,5
Vậy [x=2007,5x=2011,5
Tìm x, biết
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
Đặt x-2009=a\(\Leftrightarrow\dfrac{\left(x-2009\right)^2-\left(x-2009\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(x-2009\right)^2+\left(x-2009\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{a^2-a\left(a-1\right)+\left(a-1\right)^2}{a^2+a\left(a-1\right)+\left(a-1\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{a^2-a^2+a+a^2-2a+1}{a^2+a^2-a+a^2-2a+1}=\dfrac{19}{49}\)
=>\(\dfrac{a^2-a+1}{3a^2-3a+1}=\dfrac{19}{49}\)
=>49a^2-49a+49-57a^2+57a-19=0
=>-8a^2+8a+30=0
=>a=5/2 hoặc a=-3/2
=>x-2009=5/2 hoặc x-2009=-3/2
=>x=4023/2 hoặc x=4015/2
BT1: Tính
5) \(\dfrac{1}{1+\dfrac{2009}{2011}+\dfrac{2009}{2010}}+\dfrac{1}{1+\dfrac{2010}{2009}+\dfrac{2010}{2011}}+\dfrac{1}{1+\dfrac{2011}{2009}+\dfrac{2011}{2010}}\)
=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)
\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)