Giải phương trình: \(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
Giải phương trình:\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
giải phương trình:
\(\dfrac{\sqrt{x-2009-1}}{x-2009}+\dfrac{\sqrt{y-2010-1}}{y-2010}+\dfrac{\sqrt{z-2011-1}}{z-2011}=\dfrac{3}{4}\)
Chứng minh rằng:
\(\sqrt{2009^2+2009^2.2010^2+2010^2}\) là 1 số nguyên dương
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
Bài 1: Giải hpt : \(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=-1\\x^2+y^2+z^2=14\end{matrix}\right.\)
Bài 2: Cho các số \(a_1,a_2,...,a_{2009}\) được xác định theo công thức:
\(a_n=\dfrac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với \(n=1,2,...,2008\)
CMR: \(a_1+a_2+...+a_{2009}< \dfrac{2008}{2010}\)
Cho A=1×2×3×4×.....×2009×2010×(1+1/2+1/3+1/4+...+1/2009+1/2010)
Chứng minh:A chia hết cho 2011
Cho phương trình \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
a, Tìm ĐKXĐ .
b, Giair phương trình .
Giải phương trình: \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\frac{1}{2}(x+y+z)\)