Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)

b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\)\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)

c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)

d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên

Trần Ngọc Minh Khoa
14 tháng 10 2017 lúc 20:57

c.

\(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\)

\(\leftrightarrow\) \(x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+1+x^2+y^2+x^2y^2=2010\)

\(\leftrightarrow\)\(x^2+x^2y^2+2x\sqrt{1+y^2}.y\sqrt{1+x^2}+y^2+x^2y^2=2009\)

\(\leftrightarrow\) \(\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=2009\)

\(\leftrightarrow\) \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=\sqrt{2009}\)


Các câu hỏi tương tự
Phạm Duy Phát
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Anh Pha
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết