cho 3 số thực x, y, z thỏa mãn x+y+z =4,tìm giá trị lớn nhất của biểu thức A = xy+3yz+2zx
Cho ba số thực dương x,y,z thỏa mãn x+2y+3z=2
Tìm giá trị lớn nhất của biểu thức: S = \(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{3yz}{3yz+x}}\)+\(\sqrt{\dfrac{3xz}{3xz+4y}}\)
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
1) cho ba số thực dương x,y,z thõa mãn : x + 2y +3z = 2
Tìm giá trị lớn nhất của biểu thức :
S = \(\sqrt{\dfrac{xy}{xy+3z}}+\sqrt{\dfrac{3yz}{3yz+x}}+\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho ba số thực dương \(x,y,z\) thỏa mãn: \(x+2y+3z=2\).
Tìm giá trị lớn nhất của biểu thức: \(S=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)
Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)
\(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng bđt Cô-si có
\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)
Anh ơi năm nay e lên lớp 9 và cũng bắt đầu làm quen với dạng bất đẳng thức , a cho em hỏi mấy cái chữ M nằm ngang là gì thế ạ ? mong anh giải đáp giúp e
cho các số thực x,y,z khác 0 thỏa mãn 3x = 2y = 12-z.tính giá trị của biểu thức P= xy+yz+2zx
Đề sai? 3^x = 2^y = 12^-x?
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho 3 số thực x,y,z thỏa mãn 2x + 2y + z = 4. Tìm giá trị lớn nhất của biểu thức: A= 2xyz + yz + zx
Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
Cho các số x,y,z thỏa mãn x+y+z = 3
Tìm giá trị lớn nhất của biểu thức P = xy + yz + zx
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1
Ta có BĐT đúng sau:
x2 + y2 + z2 >= xy + yz + zx
<=> (x + y + z)2 >= 3(xy + yz + zx)
<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)