Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 15:49

Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)

\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)

\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)

Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 20:32

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

Shrimp Ngáo
Xem chi tiết
ling Giang nguyễn
3 tháng 1 2021 lúc 22:20

Không có mô tả.

Không có mô tả.

Đệ Ngô
Xem chi tiết
Incursion_03
10 tháng 6 2019 lúc 8:37

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

Đệ Ngô
10 tháng 6 2019 lúc 8:49

thank đay là đề thi chuyên toán 

Nguyễn Trí Hào
10 tháng 6 2019 lúc 8:51

Anh ơi năm nay e lên lớp 9 và cũng bắt đầu làm quen với dạng bất đẳng thức , a cho em hỏi mấy cái chữ M nằm ngang là gì thế ạ ? mong anh giải đáp giúp e

danghuutho15
Xem chi tiết
Nguyễn Linh Chi
29 tháng 11 2019 lúc 21:42

Đề sai? 3^x = 2^y = 12^-x?

Khách vãng lai đã xóa
Nguyễn Anh Tuấn
Xem chi tiết
Sofia Nàng
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 9 2021 lúc 7:40

\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)

Akai Haruma
7 tháng 9 2021 lúc 7:48

Lời giải:

Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$

$\Rightarrow H\leq \frac{z(4-z)^2}{4}$

Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$

$4-z\leq 2$ do $z\geq 2$

$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$

Hay $H\leq 2$ 

Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$

Lê Thùy Dung
Xem chi tiết
Trà My
23 tháng 4 2017 lúc 17:55

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

Hoàng Nguyễn Huy
25 tháng 5 2018 lúc 10:46

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

kiyomehaku
30 tháng 7 2020 lúc 8:34

chả biết

Khách vãng lai đã xóa