Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Việt Phương
Xem chi tiết
Hoàng Tử Hà
18 tháng 2 2021 lúc 1:50

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2021 lúc 20:51

Từ công thức truy hồi ta được:

\(u_n=sin1+\dfrac{sin2}{2^2}+\dfrac{sin3}{3^2}+...+\dfrac{sinn}{n^2}\)

\(\Rightarrow\left|u_n\right|=\left|sin1+\dfrac{sin2}{2^2}+...+\dfrac{sinn}{n^2}\right|\le\left|sin1\right|+\left|\dfrac{sin2}{2^2}\right|+...+\left|\dfrac{sinn}{n^2}\right|\)

\(\Rightarrow\left|u_n\right|< \left|1\right|+\left|\dfrac{1}{2^2}\right|+\left|\dfrac{1}{3^2}\right|+...+\left|\dfrac{1}{n^2}\right|=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

Lại có:

\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}=2-\dfrac{1}{n}< 2\)

\(\Rightarrow\left|u_n\right|< 2\Rightarrow u_n\) là dãy bị chặn

Big City Boy
Xem chi tiết
Trên con đường thành côn...
23 tháng 12 2023 lúc 19:57

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

Trên con đường thành côn...
23 tháng 12 2023 lúc 19:57

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

Big City Boy
Xem chi tiết
Trên con đường thành côn...
27 tháng 11 2023 lúc 14:57

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

Khiêm Nguyễn Gia
Xem chi tiết

\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)

Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)

\(\Rightarrow V_n=V_{n-1}\)

\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)

Có \(V_1=1.\left(1+2\right).U_1=1\)

\(\Rightarrow V_n=1\)

\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)

\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)

\(=...\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 21:23

2:

a: \(u_1=\dfrac{2-1}{1+1}=\dfrac{1}{2}\)

\(u_2=\dfrac{2\cdot2-1}{2+1}=1\)

\(u_3=\dfrac{2\cdot3-1}{3+1}=\dfrac{5}{4}\)

\(u_4=\dfrac{2\cdot4-1}{4+1}=\dfrac{7}{5}\)

b: Đặt \(\dfrac{2n-1}{n+1}=\dfrac{13}{7}\)

=>7(2n-1)=13(n+1)

=>14n-7=13n+13

=>n=20

=>13/7 là số hạng thứ 20 trong dãy

1:

a: u1=1^2-1=0

u2=2^2-1=3

u3=3^2-1=8

u4=4^2-1=15

b: 99=n^2-1

=>n^2=100

mà n>=0

nên n=10

=>99 là số thứ 10 trong dãy

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 21:26

1:

a:

u1=1^2+1=2

u2=2^2+1=5

u3=3^2+1=10

u4=4^2+1=17

b: Đặt 101=n^2+1

=>n^2=100

=>n=10

=>101 là số hạng thứ 10

2:

a: \(u1=\dfrac{1+1}{2-1}=2\)

\(u2=\dfrac{2+1}{2\cdot2-1}=\dfrac{3}{3}=1\)

\(u_3=\dfrac{3+1}{2\cdot3-1}=\dfrac{4}{5}\)

\(u_4=\dfrac{4+1}{2\cdot4-1}=\dfrac{5}{7}\)

b: Đặt \(\dfrac{n+1}{2n-1}=\dfrac{31}{59}\)

=>59(n+1)=31(2n-1)

=>62n-31=59n+59

=>3n=90

=>n=30

=>31/59 là số hạng thứ 30 trong dãy

Big City Boy
Xem chi tiết