1. Phân tích da thức thành nhân tử5x2-10xy+5y2-20z2
Phân tích thành nhân tử: 5 x 2 - 10 x y + 5 y 2 - 20 z 2
5 x 2 - 10 x y + 5 y 2 - 20 z 2 = 5 x 2 – 2 x y + y 2 – 4 z 2 = 5 x – y 2 – 2 z 2 = 5 x – y + 2 z x – y – 2 z
5x2 – 10xy + 5y2 – 20z2 = ??? (phân tích thành nhân tử)
\(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
.Phân tích các đa thức sau thành nhân tử:
a) 5x2y- 10xy2
b) x2 + 2xy + y2 - 5x - 5y
c) x2 – 6x + 8
d)5x2 – 10xy + 5y2 – 20z2
\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 9: Phân tích đa thức thành nhân tử
1, 5x2 – 10xy + 5y2 – 20z2 2, 16x – 5x2 – 3 3, x2 – 5x + 5y – y2 | 4, 3x2 – 6xy + 3y2 – 12z2 5, x2 + 4x + 3 6, (x2 + 1)2 – 4x2 7, x2 – 4x – 5
|
1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)
2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
b) (3x + 1)2 – (2x + 1)2
c) - 5x2 + 10xy – 5y2 + 20z2
\(a,=\left(3x+1-2x-1\right)\left(3x+1+2x+1\right)=x\left(5x+2\right)\\ b,=5\left[4z^2-\left(x-y\right)^2\right]=5\left(2z-x+y\right)\left(2z+x-y\right)\)
\(b,\left(3x+1\right)^2-\left(2x+1\right)^2\\ =\left[\left(3x+1\right)+\left(2x+1\right)\right]\left[\left(3x+1\right)-\left(2x+1\right)\right]\)
\(=\left(3x+1+2x+1\right)\left(3x+1-2x-1\right)\\ =x\left(5x+2\right)\)
\(c,-5x^2+10xy-5y^2+20z^2\\ =-5\left(x^2-2xy+y^2-4z^2\right)\\ =-5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\\ =-5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\\ =-5\left(x-y+2z\right)\left(x-y-2z\right)\)
Phân tích đa thức sau thành nhân tử:
a) x3 + 2x2y + xy2 - 9x b) 5x2 - 10xy + 5y2
a) x3 + 2x2y + xy2 - 9x
= x(x2 + 2xy + y2 - 9)
= x(x+y)2 - 9
= x(x + y - 3) ( x + y + 3).
b) 5x2 - 10xy + 5y2
= 5(x2 - 2xy + y2)
= 5(x-y)2
Có sai thì xin lỗi ạ
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
a: \(3ab-6a^2b\)
\(=3ab\cdot1-3ab\cdot2a\)
=3ab(1-2a)
b: \(x^3-6x\)
\(=x\cdot x^2-x\cdot6\)
\(=x\left(x^2-6\right)\)
c: \(x^2-y^2-9x+9y\)
\(=\left(x^2-y^2\right)-\left(9x-9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-9\right)\)
d: \(5x^2+10xy+5y^2\)
\(=5\left(x^2+2xy+y^2\right)\)
\(=5\left(x+y\right)^2\)
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
giải bài toán: cho tam giác MNP, NTlà phân giác của góc N biết MN=4cm, NT=10cm, MP=8cm:TínhTM, TP?
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)