Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kẻ Lạnh Lùng
Xem chi tiết
Trần Thị Thu Nga
23 tháng 10 2017 lúc 21:26

Đặt ; \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\) Ta có; \(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\)

Đào Trí Bình
Xem chi tiết
HT.Phong (9A5)
28 tháng 7 2023 lúc 10:20

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)

\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)

b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)

\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)

c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)

Đào Trí Bình
28 tháng 7 2023 lúc 10:19

Cứu mình với mình đang cần gấp!~

 

 

 

 

 

 

 

 

 

 

 

 

 

Đào Trí Bình
28 tháng 7 2023 lúc 10:28

giúp mình câu d) luôn nha phong

cảm ơn phong nha

Tagami Kera
Xem chi tiết
santa
27 tháng 12 2020 lúc 18:03

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất DTSBN :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\) (ĐPCM)

Đỗ Nguyễn Đức Trung
Xem chi tiết
Đỗ Nguyễn Đức Trung
6 tháng 11 2017 lúc 21:56

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\),=> a=bk:c=dk

Ta có : \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm)

Shizadon
6 tháng 11 2017 lúc 21:58

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> Ta sẽ có : \(\dfrac{a}{c}\). \(\dfrac{b}{d}\) = \(\dfrac{ab}{cd}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) (*1)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) (*2)

Từ (1);(2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (ĐPCM)

Nguyễn Thị Chiền
Xem chi tiết
Monkey D Luffy
Xem chi tiết
Ngô Tấn Đạt
3 tháng 1 2018 lúc 21:36

\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \dfrac{a^2}{c^2}=\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

 Mashiro Shiina
4 tháng 1 2018 lúc 6:29

Có thể dùng cách khác:v

a)\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=t\)(với t là 1 số thực bất kì thỏa mãn)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)

Tương tự:v

linhlucy
Xem chi tiết
Hà Linh
12 tháng 9 2017 lúc 15:20

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,d=ck\)

a) \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk.b}=\dfrac{b^2\left(k^2-1\right)}{b^2.k}=\dfrac{k^2-1}{k}\) (1)

\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk.d}=\dfrac{d^2\left(k^2-1\right)}{d^2k}=\dfrac{k^2-1}{k}\) (2)

Tử (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)

b) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}\)

\(=\dfrac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (1)

\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}\)

\(=\dfrac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)

Chúc bạn học tốt ♥v♥

Huyền Thoại Zuka
Xem chi tiết
Luân Đào
11 tháng 1 2018 lúc 11:26

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Suy ra:

+ \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\)

+ \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)

=> đpcm

Rosenaly
Xem chi tiết