21n+22 chia hết cho 7n+2
n^2 +7n+22 không chia hết cho 9
\(n^2+7n+22=n^2+7n+10+12=\left(n+2\right)\left(n+5\right)+12\)
Do n+2 và n+5 hơn kém nhau 3 đơn vị nên chúng có cùng số dư khi chia cho 3.
TH1: n+2 và n+5 cùng chia hết cho 3
=> tích (n+2)(n+5) chia hết cho 9
Mà 12 không chia hết cho 9 nên n^2+7n+22 không chia hết cho 9
TH2: n+2 và n+5 cùng không chia hết cho 3
=> tích (n+2)(n+5) không chia hết cho 3
Mà 12 chia hết cho 3 nên n^2+7n+22 không chia hết cho 3 => không chia hết cho 9
=> ĐPCM
CMR:n^2+7n+22 ko chia hết cho 49 (n thuộc Z)
cmr: n2 +7n +22 không chia hết cho 9
tìm n thuộc Z sao cho :
a, 7n chia hết cho 3
b, -22 chia hết cho n
c, -16 chia hết cho (n-1)
d, (n +19) chia hết cho 18
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
a)4n-28 chia hết cho 2n-22
b)7n-1 chia hết cho 11-n
Ta có :\(4n-28⋮2n-22\)
\(\Rightarrow4n-44+16⋮2n-22\)
Mà \(4n-44⋮2n-22\Rightarrow16⋮n-22\)
\(\Rightarrow n-22\inƯ\left(16\right)=\left\{1;2;4;8;16\right\}\)
+ \(n-22=1\Rightarrow n=23\)
+ \(n-22=2\Rightarrow n=24\)
+ \(n-22=4\Rightarrow n=26\)
+ \(n-22=8\Rightarrow n=30\)
+ \(n-22=16\Rightarrow n=38\)
Vậy \(n\in\left\{23;24;26;30;38\right\}\)
a) \(A=2+\dfrac{8}{n+11}\)
A nguyên => n-11 thuộc ước 8 =>
n-11 ={-8,-4,-2,-1,1,2,4,8)
n ={3,7,9,10,11,13,15,19}
Chứng minh rằng :
n2 + 7n + 22 không chia hết cho 9
Ta co: n^2+7n+22=(n+2)(n+5)+12
xét hiệu n+5-(n+2)=3⋮3
=>n+5và n+2 có cùng số dư khi chia cho 3
+xét n+5 và n+2 có cùng số dư khác 0:
=>(n+5)(n+2) \(⋮̸\) 3
12 chia hết cho 3=>(n+2)(n+5)+12 \(⋮̸\) 3
+xét n+5 và n+2 cùng chia hết cho 3
=>(n+5)(n+2) chia hết cho 9
12 \(⋮̸\) 9=>(n+5)(n+2)+12 \(⋮̸\) 9
=>DPCM
Chứng minh rằng n2 + 7n + 22 không chia hết cho 9
ai thèm trả lời câu hỏi của thằng troll làm j???
đây nha bạn: CMR: n^2+7n+22 không chia hết cho 9? | Yahoo Hỏi & Đáp
Chứng minh rằng:
\(n^2+7n+22\) không chia hết cho 9
Vì trong tổng n2 +7n + 22 có số 22 không chia hết cho 9 nên tổng này không chia hết cho 9
Mạc dù vậy nhưng nếu n2+7n chi cho 9 dư 5 thì tổng vẫn chia hết cho 9
ta có: 4(n2+7n+22)=(2n+7)2+39
nếu (2n+7) chia hết cho 3 => (2n+7)2 chia hết cho 9 => (2n+7)2 không chia hết cho 9
nếu 2n+7 ko chia hết cho 3 =>(2n+7)2 ko chia hết cho 9 => (2n+7)2+39 ko chia hết cho 9
=>n2+7n+22 ko chia hết cho 9 với mọi n thuộc Z
Tìm số nguyên n, biết
a,-22 chia hết cho n
b,-16 chia hết cho (n - 1)
c,7n chia hết cho 3
d,n + 19 chia hết cho 18