Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
....
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 7 2021 lúc 16:44

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 16:46

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Ayakashi
Xem chi tiết
Thắng Nguyễn
8 tháng 7 2017 lúc 0:10

Sr tui bj cuồng liên hợp làm mãi cách này có lố ko nhỉ :v

Đk:\(x\ge\frac{8}{3}\)

\(pt\Leftrightarrow4x-2-8-\left(3\sqrt{5x-6}-9\right)=\sqrt{3x-8}-1\)

\(\Leftrightarrow4x-2-10-\frac{9\left(5x-6\right)-81}{3\sqrt{5x-6}+9}=\frac{3x-8-1}{\sqrt{3x-8}+1}\)

\(\Leftrightarrow4\left(x-3\right)-\frac{45\left(x-3\right)}{3\sqrt{5x-6}+9}-\frac{3\left(x-3\right)}{\sqrt{3x-8}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}\right)=0\)

Dễ thấy: \(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}>0\forall x\ge\frac{8}{3}\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

Ayakashi
8 tháng 7 2017 lúc 10:57

cảm ơn bạn nhiều lắm :v mà cô bọn tui bắt làm bài này theo cách tổng bình phương :v hiccc

Tran Le Khanh Linh
28 tháng 6 2020 lúc 20:57

\(2\left(2x-1\right)-3\sqrt{5x-6}=\sqrt{3x-8}\left(x\ge\frac{8}{3}\right)\)

PT đã cho tương đương với \(2\left(2x-1\right)=\sqrt{3x-8}+3\sqrt{5x-6}\)

\(\Leftrightarrow\sqrt{3x-8}+3\sqrt{5x-6}-4x+2=0\)

\(\Leftrightarrow2\sqrt{3x-8}+2\cdot3\sqrt{5x-6}-8x+4=0\)

\(\Leftrightarrow-2\sqrt{3x-8}-2\cdot3\sqrt{5x-6}+8x-4=0\)

\(\Leftrightarrow\left(3x-8\right)-2\sqrt{3x-8}+1+\left(5x-6\right)-2\cdot3\sqrt{5x-6}+9=0\)

\(\Leftrightarrow\left(\sqrt{3x-8}-1\right)^2+\left(\sqrt{5x-6}-3\right)^2=0\)(*)

(*) chỉ thỏa mãn khi \(\hept{\begin{cases}\sqrt{3x-8}-1=0\\\sqrt{5x-8}-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{3x-8}=1\\\sqrt{5x-8}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}3x-8=1\\5x-8=9\end{cases}\Leftrightarrow}x=3\left(tm\right)}\)

Vậy x=3

Khách vãng lai đã xóa
Ayakashi
Xem chi tiết
Thắng Nguyễn
6 tháng 7 2017 lúc 15:15

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)

\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\frac{3\left(x^2-x-1\right)-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}-\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)

\(\Leftrightarrow\frac{3x^2-5x-2}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-6}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)

Dễ thấy: \(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\) vô nghiệm

\(\Rightarrow x-2=0\Rightarrow x=2\)

Bích Linh
15 tháng 7 2017 lúc 19:07

sao cái từ "dễ thấy" nó khó thấy quá v 

Vongola Famiglia
16 tháng 7 2017 lúc 13:05

haha :v

Hoài Nam Nguyễn
Xem chi tiết
Anh Quỳnh
15 tháng 3 2016 lúc 10:53

ĐK : \(\begin{cases}x\ge\frac{-1}{3}\\y\le5\end{cases}\)

\(\sqrt{5x^2+3y+1}+1-4x=0\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{4}\\5x^2+3y+1=16x^2-8x+1\left(1\right)\end{cases}\)

(1) \(\Leftrightarrow11x^2-8x-3y=0\left(2\right)\)

Đặt \(\begin{cases}\sqrt{3x+1}=a\left(a\ge0\right)\\\sqrt{5-y}=b\left(b\ge0\right)\end{cases}\) \(\Rightarrow\begin{cases}3x+2=a^2+1\\6-y=b^2+1\end{cases}\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\\ \Leftrightarrow a^3-b^3+a-b=0\\ \Leftrightarrow\left(a-b\right)\left(a^2-ab+b^2+1\right)=0\\ \Leftrightarrow a-b=0\left(a^2-ab+b^2+1>0\right)\\\Leftrightarrow a=b\\ \)

\(\Rightarrow\sqrt{3x+1}=\sqrt{5-y}\\ \Leftrightarrow3x+1=5-y\\ \Leftrightarrow y=4-3x\left(3\right)\)

Từ (2) và (3)

 \(\Rightarrow11x^2-8x-3\left(4-3x\right)=0\\ \Leftrightarrow11x^2+x-12=0\\ \Leftrightarrow x=1\left(TM\right);x=\frac{-12}{11}\left(loại\right)\\ \Rightarrow y=1\left(TM\right)\)

Vậy S = \(\left\{\left(1;1\right)\right\}\)

Thỏ Ngọc
14 tháng 3 2016 lúc 19:05

no biết

Lê Phương Thủy
15 tháng 3 2016 lúc 17:12

Mình mới lớp 6 Sorry

Fairy Tail
Xem chi tiết
Akai Haruma
10 tháng 8 2021 lúc 17:11

Lời giải có tại đây:

https://hoc24.vn/cau-hoi/1-23sqrt3x-23sqrt6-5x-802-sqrt3x1-sqrt6-x3x2-14x-803-sqrtx21253xsqrtx25.1468578539979

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Luân Đào
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 17:07

ĐKXĐ:

\(\left(2x+2-2\sqrt{5x-1}\right)+\left(\sqrt{5x^2+x+3}-\left(2x+1\right)\right)+x^2-3x+2=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{x+1+\sqrt{5x-1}}+\dfrac{x^2-3x+2}{\sqrt{5x^2+x+3}+2x+1}+x^2-3x+2=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{2}{x+1+\sqrt{5x-1}}+\dfrac{1}{\sqrt{5x^2+x+3}+2x+1}+1\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)