\(\left\{{}\begin{matrix}\sqrt[3]{x}+\sqrt[3]{y}=4\\xy=27\end{matrix}\right.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\sqrt{11x-y}-\sqrt{y-x}=1\\7\sqrt{y-x}+6y-26x=3\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(y-3\right)\sqrt{xy}+2y\sqrt{x}-4\sqrt{y}-2y+6=0\\y^4-xy^3+xy=4\end{matrix}\right.\)
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
1) x\(^3\) + y\(^3\) = 19
2) (x + y)(8 + y) = 2
3) \(\left\{{}\begin{matrix}x+y+\sqrt{xy}=19\\x^2+2y^2+xy=133\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}\sqrt[4]{y^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\)
ĐKXĐ: \(x\ge0;y\ge1\).
Đặt \(\left\{{}\begin{matrix}\sqrt[4]{y^3-1}=a\ge0\\\sqrt{x}=b\ge0\end{matrix}\right.\).
HPT đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=3\\a^4+b^4=81\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(a+b\right)^4-2ab\left(2a^2+3ab+2b^2\right)=81\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(2a^2+3ab+2b^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3;b=0\\a=0;b=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9;y=1\\x=0;y=\sqrt[3]{82}\end{matrix}\right.\).
1)\(\left\{{}\begin{matrix}1+x^3y^3=19x^3\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\sqrt{x-4}+\sqrt{y-1}=4\\x+y=63\end{matrix}\right.\)
\(2,ĐK:x\ge4;y\ge1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-4}=a\\\sqrt{y-1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2ab+58=16\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=-21\\a+b=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2-4b-21=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=7\Rightarrow a=-3\\b=-3\Rightarrow a=7\end{matrix}\right.\left(loại\right)\)
Vậy hệ vô nghiệm
\(1,\\ \forall x=0\\ HPT\Leftrightarrow1=19\left(\text{vô lí}\right)\\ \forall x\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}+y^3=19\\\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{x}+y\right)^3-3\cdot\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=19\\\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=-6\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}+y=a\\\dfrac{y}{x}=b\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a^3-3ab=19\\ab=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+y=1\\\dfrac{y}{x}=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1+xy=x\\y=-6x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3};y=-2\\x=-\dfrac{1}{2};y=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{1}{3};-2\right);\left(-\dfrac{1}{2};3\right)\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x}+\sqrt{x+3}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)
a, ĐK: \(x,y\ge0\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+3}=x+1\)
\(\Leftrightarrow x+3=x^2+2x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)
Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)
Vậy pt đã cho có nghiệm \(x=y=1\)
b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)
Vậy ...
c, Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2=9\)
\(\Rightarrow x+y=\pm3\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=-3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x+xy+y=11\\x^2+y^2-xy-2\left(x+y\right)=-31\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}x^2+4y^2=8\\x+2y=4\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
Câu 1:
HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=11\\ (x+y)^2-3xy-2(x+y)=-31\end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\) thì hệ trở thành:
\( \left\{\begin{matrix} a+b=11\\ a^2-3b-2a=-31\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=11-a\\ a^2-3b-2a+31=0\end{matrix}\right.\)
\(\Rightarrow a^2-3(11-a)-2a+31=0\)
\(\Leftrightarrow a^2+a-2=0\Leftrightarrow (a-1)(a+2)=0\)
\(\Rightarrow \left[\begin{matrix} a=1\\ a=-2\end{matrix}\right.\)
Nếu $a=1\Rightarrow b=11-a=10$
Như vậy $x+y=1; xy=10$
\(\Rightarrow x(1-x)=10\Leftrightarrow x^2-x+10=0\Leftrightarrow (x-\frac{1}{2})^2=-\frac{39}{4}< 0\) (vô lý)
Nếu \(a=-2\Rightarrow b=11-a=13\)
Như vậy $x+y=-2; xy=13$
$\Rightarrow x(-2-x)=13\Leftrightarrow x^2+2x+13=0\Leftrightarrow (x+1)^2=-12< 0$ (vô lý)
Vậy HPT vô nghiệm.
Câu 2:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy-(x-y)=-3\\ (x-y)^2-(x-y)+3xy=6\end{matrix}\right.\)
Đặt \(xy=a; x-y=b\) thì hệ trở thành:
\(\left\{\begin{matrix} a-b=-3\\ b^2-b+3a=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b-3\\ b^2-b+3a-6=0\end{matrix}\right.\)
\(\Rightarrow b^2-b+3(b-3)-6=0\)
\(\Leftrightarrow b^2+2b-15=0\Leftrightarrow (b-3)(b+5)=0\)
\(\Rightarrow \left[\begin{matrix} b=3\\ b=-5\end{matrix}\right.\)
Nếu $b=3=x-y\Rightarrow a=xy=b-3=0$
\(\Rightarrow (x,y)=(0,-3); (3,0)\)
Nếu \(b=x-y=-5\Rightarrow a=xy=b-3=-8\)
\(\Rightarrow (y-5)y=-8\)
\(\Leftrightarrow y^2-5y+8=0\Leftrightarrow (y-2,5)^2=-1,75< 0\) (vô lý)
Vậy $(x,y)=(0,-3)$ hoặc $(3,0)$
Câu 3:
HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+4y^2=8\\ x=4-2y\end{matrix}\right.\Rightarrow (4-2y)^2+4y^2=8\)
\(\Leftrightarrow 8y^2-16y+8=0\Leftrightarrow y^2-2y+1=0\)
\(\Leftrightarrow (y-1)^2=0\Rightarrow y=1\)
Thay $y=1$ có $x=4-2y=2$
Vậy $(x,y)=(2,1)$
giải hệ pt :
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)
Phương trình này vô nghiệm
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
b, ĐK: \(xy>0\)
\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...