Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mỹ Lệ
Xem chi tiết
em ơi
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 16:41

a.

ĐKXĐ: \(x;y\ge-1;xy\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\) 

\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 16:45

b.

ĐKXĐ: \(x;y\ge1\)

Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)

\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)

Thế vào pt đầu:

\(x+y=5+\dfrac{11-x-y}{2}\)

\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)

Thế xuống pt dưới:

\(\sqrt{x-1}+\sqrt{6-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)

\(\Leftrightarrow...\)

poppy Trang
Xem chi tiết
Trần Huy tâm
5 tháng 2 2020 lúc 21:42

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm

Khách vãng lai đã xóa
Miner Đức
Xem chi tiết
Trần Minh Hoàng
30 tháng 12 2020 lúc 20:27

ĐKXĐ: \(x\ge0;y\ge1\).

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{y^3-1}=a\ge0\\\sqrt{x}=b\ge0\end{matrix}\right.\).

HPT đã cho trở thành:

\(\left\{{}\begin{matrix}a+b=3\\a^4+b^4=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(a+b\right)^4-2ab\left(2a^2+3ab+2b^2\right)=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(2a^2+3ab+2b^2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3;b=0\\a=0;b=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9;y=1\\x=0;y=\sqrt[3]{82}\end{matrix}\right.\).

 

 

Lê Mai
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 12 2021 lúc 10:04

\(2,ĐK:x\ge4;y\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-4}=a\\\sqrt{y-1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2ab+58=16\\a^2+b^2=58\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=-21\\a+b=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=4-b\\b^2-4b-21=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=7\Rightarrow a=-3\\b=-3\Rightarrow a=7\end{matrix}\right.\left(loại\right)\)

Vậy hệ vô nghiệm

Nguyễn Hoàng Minh
26 tháng 12 2021 lúc 9:57

\(1,\\ \forall x=0\\ HPT\Leftrightarrow1=19\left(\text{vô lí}\right)\\ \forall x\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}+y^3=19\\\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{x}+y\right)^3-3\cdot\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=19\\\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=-6\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}+y=a\\\dfrac{y}{x}=b\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a^3-3ab=19\\ab=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+y=1\\\dfrac{y}{x}=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1+xy=x\\y=-6x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3};y=-2\\x=-\dfrac{1}{2};y=3\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{1}{3};-2\right);\left(-\dfrac{1}{2};3\right)\)

Kim Trí Ngân
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Hồng Phúc
30 tháng 7 2021 lúc 17:30

a, ĐK: \(x,y\ge0\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+3}=x+1\)

\(\Leftrightarrow x+3=x^2+2x+1\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)

Vậy pt đã cho có nghiệm \(x=y=1\)

Hồng Phúc
30 tháng 7 2021 lúc 17:36

b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)

Vậy ...

Hồng Phúc
30 tháng 7 2021 lúc 17:44

c, Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x+y=\pm3\)

TH1: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=-3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Đoàn Thị Thanh Loan
Xem chi tiết
Akai Haruma
3 tháng 8 2019 lúc 19:19

Câu 1:

HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=11\\ (x+y)^2-3xy-2(x+y)=-31\end{matrix}\right.\)

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\) thì hệ trở thành:

\( \left\{\begin{matrix} a+b=11\\ a^2-3b-2a=-31\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=11-a\\ a^2-3b-2a+31=0\end{matrix}\right.\)

\(\Rightarrow a^2-3(11-a)-2a+31=0\)

\(\Leftrightarrow a^2+a-2=0\Leftrightarrow (a-1)(a+2)=0\)

\(\Rightarrow \left[\begin{matrix} a=1\\ a=-2\end{matrix}\right.\)

Nếu $a=1\Rightarrow b=11-a=10$

Như vậy $x+y=1; xy=10$

\(\Rightarrow x(1-x)=10\Leftrightarrow x^2-x+10=0\Leftrightarrow (x-\frac{1}{2})^2=-\frac{39}{4}< 0\) (vô lý)

Nếu \(a=-2\Rightarrow b=11-a=13\)

Như vậy $x+y=-2; xy=13$

$\Rightarrow x(-2-x)=13\Leftrightarrow x^2+2x+13=0\Leftrightarrow (x+1)^2=-12< 0$ (vô lý)

Vậy HPT vô nghiệm.

Akai Haruma
3 tháng 8 2019 lúc 19:28

Câu 2:

HPT \(\Leftrightarrow \left\{\begin{matrix} xy-(x-y)=-3\\ (x-y)^2-(x-y)+3xy=6\end{matrix}\right.\)

Đặt \(xy=a; x-y=b\) thì hệ trở thành:

\(\left\{\begin{matrix} a-b=-3\\ b^2-b+3a=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b-3\\ b^2-b+3a-6=0\end{matrix}\right.\)

\(\Rightarrow b^2-b+3(b-3)-6=0\)

\(\Leftrightarrow b^2+2b-15=0\Leftrightarrow (b-3)(b+5)=0\)

\(\Rightarrow \left[\begin{matrix} b=3\\ b=-5\end{matrix}\right.\)

Nếu $b=3=x-y\Rightarrow a=xy=b-3=0$

\(\Rightarrow (x,y)=(0,-3); (3,0)\)

Nếu \(b=x-y=-5\Rightarrow a=xy=b-3=-8\)

\(\Rightarrow (y-5)y=-8\)

\(\Leftrightarrow y^2-5y+8=0\Leftrightarrow (y-2,5)^2=-1,75< 0\) (vô lý)

Vậy $(x,y)=(0,-3)$ hoặc $(3,0)$

Akai Haruma
3 tháng 8 2019 lúc 19:30

Câu 3:

HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+4y^2=8\\ x=4-2y\end{matrix}\right.\Rightarrow (4-2y)^2+4y^2=8\)

\(\Leftrightarrow 8y^2-16y+8=0\Leftrightarrow y^2-2y+1=0\)

\(\Leftrightarrow (y-1)^2=0\Rightarrow y=1\)

Thay $y=1$ có $x=4-2y=2$

Vậy $(x,y)=(2,1)$

Mai Thị Thúy
Xem chi tiết
Hồng Phúc
30 tháng 7 2021 lúc 17:10

a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)

Phương trình này vô nghiệm

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)

Hồng Phúc
30 tháng 7 2021 lúc 17:20

b, ĐK: \(xy>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...