Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 11:12

Lần lượt lấy pt (3) trừ 2 lần pt (1) và pt (2) trừ 3 lần pt (1) ta được:

\(\left\{{}\begin{matrix}y-\left(2m+3\right)z=-3\\y-\left(3m+1\right)z=m-3\end{matrix}\right.\)

Hệ đã cho có vô số nghiệm khi và chỉ khi:

\(\dfrac{1}{1}=\dfrac{3m+1}{2m+3}=\dfrac{m-3}{-3}\) (ko tồn tại m thỏa mãn)

Vậy ko tồn tại m để hệ có vô số nghiệm

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 11:02

Nhân 2 vế của pt thứ 2 với m rồi trừ đi pt thứ 3 ta được

\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\\-x+m^2y=m-1\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(m^3+1\ne0\Rightarrow m\ne-1\)

Thanh Thanh
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 4 2022 lúc 14:39

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Nguyễn Đức Lâm
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 lúc 21:52

Hệ đã cho vô nghiệm khi:

\(\dfrac{1}{2}=\dfrac{m}{3m-1}\ne\dfrac{6}{3}\)

\(\Rightarrow3m-1=2m\)

\(\Rightarrow m=1\)

Sennn
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:45

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

Lê Phúc Huấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 21:45

a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)

b: x+3y=5 và 2x-5y=-1

=>2x+6y=10 và 2x-5y=-1

=>11y=11 và x+3y=5

=>y=1 và x=2

c: 3x-4y=18 và 2x+y=1

=>3x-4y=18 và 8x+4y=4

=>11x=22 và 2x+y=1

=>x=2 và y=1-2*2=-3

 

nam do duy
Xem chi tiết
YangSu
9 tháng 3 2023 lúc 17:28

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

Kim Tuyền
Xem chi tiết
HT.Phong (9A5)
30 tháng 9 2023 lúc 19:31

Bài 1:

Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))  

Hệ trở thành:

\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)

Trả lại ẩn của hệ pt:

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)