Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi minh thế
Xem chi tiết
Nguyễn Linh Chi
21 tháng 3 2020 lúc 9:47

A B C D M K

a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )

=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)

Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực  hay KM là đường trung trực => KB = KC(2)

\(\Delta\)ABC cân => AB = AC (3)

Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi

b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC 

=> ABCD là hình bình hành 

c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM  => ^DAK = ^DAM = 90 độ 

Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm 

\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm 

=> AK = 2AM = 2.4 = 8cm

AD = BC = 6cm ( ABCD là hình bình hành )

=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2) 

d) Để ABKC kaf hình vuông; mà ABKC là hình thoi  nên ^BAC = 90 độ 

=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.

Khách vãng lai đã xóa
3432 miku
Xem chi tiết
azusa
Xem chi tiết
Edogawa Conan
3 tháng 12 2019 lúc 15:52

A B C M K D

a) Do t/giác ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AM \(\perp\)BC hay AK \(\perp\)BC

Xét tứ giác ABKC

có AM = MK (gt) ; BM = CM (gt)

 AK \(\perp\)BC (cmt)

=> ABKC là hình thoi

b) Do ABKC là hình thoi => AB // CK hay AB // CD (vì K, C,D thẳng hàng)

Xét tứ giác ABCD có AB // CD (cmt) AD // BC (gt)

=> ABCD là hình bình hành

c) Ta có: BC // AD (gt)

   AM \(\perp\)BC (cm câu a)

=> AM \(\perp\)AD \(\equiv\)A

=> \(\widehat{KAD}=90^0\)

Ta có: BM = MC = 1/2BC = 1/2.6 = 3 cm

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

 AB2 = AM2 + BM2

=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16

=> AM = 4 (cm)

Ta lại có: AM + MK = AK => AK = 2AM (do AM = MK)

=> AK = 2.4 = 8 (cm)

Do ABCD là hình bình hành => BC = AD = 6 cm

Diện tích t/giác DAK là: SDAK  = 6.8/2 = 24 (cm2)

Khách vãng lai đã xóa
Phú Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:02

a: Xét tứ giác ABKC có

M là trung điểm của BC

M là trung điểm của AK

Do đó: ABKC là hình bình hành

mà AB=AC

nên ABKC là hình thoi

Phú Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 19:41

a: Xét tứ giác ABKC có

M là trung điểm của BC

M là trung điểm của AK

Do đó: ABKC là hình bình hành

mà AB=AC

nên ABKC là hình thoi

Cảnh
Xem chi tiết
Hquynh
18 tháng 12 2020 lúc 12:14

B A C M D E

Hquynh
18 tháng 12 2020 lúc 12:26

A, Xét tứ giác ABCD có

MB=MC=1/2BC(M là trung điểm BC-gt)

MD=MA=1/2AD( M là trung điểm AD-gt)

mà AD cắt BC tại M

->ABCD là hbh

Ta có ABCD là hình bh ( cmt)

mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)

-> ABCD là hcn(Đpcm)

B, Gọi I là giao điêm của AB và EM 

Ta có góc BIM=90 độ( do M đối E qua AB-gt)

          góc BAC = 90 độ( tam giác ABC vuông tại A-gt)

 mà hai góc vị trí đồng vị

-> IM song song AC

Xét tam giác  BAC có

M là trung điểm BC(gt)

IM song song AC( cmt)

-> I là trung điểm AB

Ta có

IA=IB=1/2AB( I là trung điểm AB-cmt)

IE=IM=1/2EM(M đối E qua AB-gt)

mà EM cắt AB tại I

-> EAMB là hình bình hành

Mà AB vuông góc EM ( M đối E qua AB-gt)

-> EAMB là hình thoi( đpcm)

Xong rùi nha bnoaoa      

quaqua7
Xem chi tiết

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

Hình bình hành ABKC có AB=AC

nên ABKC là hình thoi

b: Hình thoi ABKC trở thành hình vuông khi \(\widehat{BAC}=90^0\)

c: Ta có:ABKC là hình thoi

=>AB//KC

mà C\(\in\)KD

nên AB//CD

Xét tứ giác ABCD có

AD//BC

AB//CD

Do đó: ABCD là hình bình hành

=>AD=BC

Phúc Trương
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 22:40

\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao

Vì D là trung điểm AC và MN nên AMCN là hình bình hành

Mà \(AM\bot BC\Rightarrow AM\bot MC\)

Do đó: AMCN là hình chữ nhật

\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)

Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)

Vậy ABMN là hình bình hành

\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)

Áp dụng PTG vào tam giác ABM vuông M

\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)

Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)

Thanh Hoàng Thanh
21 tháng 12 2021 lúc 22:39

a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.

Xét tứ giác AMCN có:

+ D là trung điểm của MN (N đối xứng với M qua D).

+ D là trung điểm của AC (gt).

\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).

Lại có:  \(\widehat{AMC}\) = 90o (cmt).

 \(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).

b) Tứ giác AMCN là hình chữ nhật (cmt).

\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).

\(\Rightarrow\) AN // BM.

Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.

\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.

Mà AN = MC (Tứ giác AMCN là hình chữ nhật).

\(\Rightarrow\) BM = MC = AN.

Xét tứ giác ABMN có:

+ BM = AN (cmt).

+ BM // AN (cmt).

\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).

c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).

Xét tam giác AMB vuông tại M có:

AB2 = AM2 + BM2 (Định lý Pytago).

Thay số: 52 = AM2 + 32.

\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).

Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).

Akai Haruma
21 tháng 12 2021 lúc 22:44

Lời giải:
a. Vì $N$ đối xứng với $M$ qua $D$ nên $D$ là trung điểm $MN$

Tứ giác $AMCN$ có 2 đường chéo $AC, MN$ cắt nhau tại trung điểm $D$ của mỗi đường nên $AMCN$ là hình bình hành.

Mặt khác:

$ABC$ là tam giác cân nên đường trung tuyến $AM$ đồng thời là đường cao

$\Rightarrow AM\perp BC$ hay $\widehat{AMC}=90^0$
Hình bình hành $AMCN$ có 1 góc vuông nên là hcn.

b. Vì $AMCN$ là hcn nên $AN=MC$ và $AN\parallel MC$

Mà $BM=MC$ và $B,M,C$ thẳng hàng

$\Rightarrow BM=AN$ và $BM\parallel AN$
$\Rightarrow ANMB$ là hbh

c.

Diện tích $AMCN$: $S=AM.MC$. Trong đó:
$AM=\sqrt{AB^2-BM^2}=\sqrt{5^2-(6:2)^2}=4$ (cm) theo định lý Pitago)

$MC=BC:2=3$ (cm)

$\Rightarrow S=3.4=12$ (cm2)

 

Bùi Thị Thảo
Xem chi tiết
♥✪BCS★Tuyết❀ ♥
3 tháng 2 2019 lúc 20:15

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K