Tìm x, biết: 2 x + 3 x = 5 x .
A. x = 0 B. x = 1
C. x = -1 D. x = 2
Tìm x biết: (x + 4)(x − 4) − x\(^2\) + 3x = 5.
A. x = 7
B. x = 1
C. x = −7
D. x = 3
\(\Rightarrow x^2-16-x^2+3x=5\)
\(\Rightarrow3x=21\Rightarrow x=7\)
=> Chọn A
A=(x/x+3 - 2/x-3 + x^2-1/9-x^2):(2- x+5/3+x)
a;rút gọn biểu thức A
b;tìm A biết |x|=1
c;tìm x biết a=1/2
d; tìm các giá trị thuộc z để a thuộc giá trị nguyên
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}
Tìm giá trị nhỏ nhất của
a) \(A=\dfrac{9x}{2-x}+\dfrac{2}{x} \) (0<x<2)
b) \(y=\dfrac{x}{1-x}+\dfrac{5}{x}
\) ; 0<x<1
c) \(C=\dfrac{2}{1-x}+\dfrac{1}{x} \)với 0<x<1
`A=(9(x-2)+18)/(2-x)+2/x`
`=-9+18/(2-x)+2/x`
`=-9+2(9/(2-x)+1/x)`
Áp dụng bđt cosi-schwarts ta có:
`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`
`=>A>=16-9=7`
Dấu "=" xảy ra khi `3/(2-x)=1/x`
`<=>3x=2-x`
`<=>4x=2<=>x=1/2(tm)`
b
`y=x/(1-x)+5/x`
`=(x-1+1)/(1-x)+5/x`
`=1/(1-x)+5/x-1`
Áp dụng cosi-schwarts ta có:
`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`
`=>y>=5+2sqrt5`
Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`
`<=>x=sqrt5-sqrt5x`
`<=>x(1+sqrt5)=sqrt5`
`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`
`c)C=2/(1-x)+1/x`
Áp dụng bđt cosi schwarts ta có:
`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`
Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`
`<=>sqrt2x=1-x`
`<=>x(sqrt2+1)=1`
`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`
Tìm x, biết :
a, x + 2/5 = 1/x - 2
b, x + 1/2 = 8/x + 1
c, x + 2/5 = 1/x - 2
d, x - 3/x + 1 = x + 2/x - 5
Mn giúp em vs ạ em cần gấp...
a: Ta có: \(\dfrac{x+2}{5}=\dfrac{1}{x-2}\)
\(\Leftrightarrow x^2-4=5\)
hay \(x\in\left\{3;-3\right\}\)
d: Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x+2}{x-5}\)
\(\Leftrightarrow x^2-8x+15=x^2+3x+2\)
\(\Leftrightarrow-11x=-13\)
hay \(x=\dfrac{13}{11}\)
a) ĐKXĐ: \(x\ne2\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)=5.1\)
\(\Rightarrow x^2-4=5\Rightarrow x^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-3\left(tm\right)\end{matrix}\right.\)
b) ĐKXĐ: \(x\ne-1\)
\(\Rightarrow\left(x+1\right)^2=2.8=16\)
\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)
c) giống câu a
d) ĐKXĐ: \(x\ne5,x\ne-1\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=\left(x-3\right)\left(x-5\right)\)
\(\Rightarrow x^2+3x+2=x^2-8x+15\)
\(\Rightarrow11x=13\)
\(\Rightarrow x=\dfrac{13}{11}\left(tm\right)\)
Cho \(D=\left(\dfrac{x-2}{x+2}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x>0; x\ne1\)
a) Tìm x để \(2D=2\sqrt{x}+5\)
b) Tìm x để D<1
c) Tìm x nguyên để D nguyên
tìm x en biết
a, x + 12 CHIA HẾT CHO x - 4
b, 2.x + 5 chia hết cho x - 1
c, 2 .x + 6 chia hết cho 2 . x - 1
d , 3 . x + 7 chia hết cho 2 . x - 2
e , 5 . x + 12 chia hết cho x - 3
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
Giải:
a) \(x+12⋮x-4\)
\(\Rightarrow x-4+16⋮x-4\)
\(\Rightarrow16⋮x-4\)
\(\Rightarrow x-4\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Ta có bảng giá trị:
x-4 | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
x | -12 (loại) | -4 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 5 (t/m) | 6 (t/m) | 8 (t/m) | 12 (t/m) | 20 (t/m) |
Vậy \(x\in\left\{0;2;3;5;6;8;12;20\right\}\)
b) \(2x+5⋮x-1\)
\(\Rightarrow2x-2+7⋮x-1\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
x | -6 (loại) | 0 (t/m) | 2 (t/m) | 8 (t/m) |
Vậy \(x\in\left\{0;2;8\right\}\)
c) \(2x+6⋮2x-1\)
\(\Rightarrow2x-1+7⋮2x-1\)
\(\Rightarrow7⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2x-1 | -7 | -1 | 1 | 7 |
x | -3 (loại) | 0 (t/m) | 1 (t/m) | 4 (t/m) |
Vậy \(x\in\left\{0;1;4\right\}\)
d) \(3x+7⋮2x-2\)
\(\Rightarrow6x-6+20⋮2x-2\)
\(\Rightarrow20⋮2x-2\)
\(\Rightarrow2x-2\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Vì \(2x-2\) là số chẵn nên \(2x-2\in\left\{\pm2;\pm4;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
2x-2 | -20 | -10 | -4 | -2 | 2 | 4 | 10 | 20 |
x | -9 (loại) | -4 (loại) | -1 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 6 (t/m) | 11 (t/m) |
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
e) \(5x+12⋮x-3\)
\(\Rightarrow5x-15+27⋮x-3\)
\(\Rightarrow27⋮x-3\)
\(\Rightarrow x-3\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Ta có bảng giá trị:
x-3 | -27 | -9 | -3 | -1 | 1 | 3 | 9 | 27 |
x | -24 (loại) | -6 (loại) | 0 (t/m) | 2 (t/m) | 4 (t/m) | 6 (t/m) | 12 (t/m) | 30 (t/m) |
Vậy \(x\in\left\{0;2;4;6;12;30\right\}\)
bài 1: giải phương trình
a, \(\dfrac{-3}{x^2-9}\)+ \(\dfrac{5}{3-x}\)=\(\dfrac{2}{x+3}\)
b, \(\left|x+5\right|\) = 2x-1
c, \(^{x^4}\)- \(^{x^3}\)+2\(^{x^2}\)-x + 1 = 0
a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)
<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)
<=> -3 + (-5x) + (-15) = 2x - 6
<=> -5x -2x = 15 - 6 + 3
<=> -7x = 12
<=> x = \(\dfrac{-12}{7}\)
Vậy ........
b. \(\left|x+5\right|=2x-1\)
Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5
Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)
TH1: Nếu x \(\ge\) -5
<=> x + 5 = 2x - 1
<=> x - 2x = -1 - 5
<=> -x = -6
<=> x = 6
TH2: Nếu x < -5
<=> -(x + 5) = 2x - 1
<=> -x - 5 = 2x - 1
<=> -5 + 1 = 2x + x
<=> -4 = 3x
<=> x = \(\dfrac{-4}{3}\)
Vậy .........
c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau
a) A= (x-1)(x-3)\(\left(x^2-4x+5\right)\)
b) B= \(x^2\)-2xy+\(2y^2\)-2y+1
c) C= 5+ (1-x)(x+2)(x+3)(x+6)
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
tìm x biết : a)x(x-3)-x^2+5=0 b)x^2-6x=0 c)2x^3+5x^2-012x=0
a: Ta có: \(x\left(x-3\right)-x^2+5=0\)
\(\Leftrightarrow-3x+5=0\)
hay \(x=\dfrac{5}{3}\)
b: Ta có: \(x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)