Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Eck_Xank
Xem chi tiết
Eck_Xank
17 tháng 3 2016 lúc 14:40

Cho cách giải chi tiết nha

Nguyễn Kiều Anh
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

minh anh minh anh
Xem chi tiết
Trần Hà trang
17 tháng 12 2016 lúc 22:30

x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0

TH1: x=0,y=4

=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó

TH2: x=1,y=3

=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1

TH3:x=2,y=2

=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1

TH4:x=3,y=1 bằng 1 bạn tự  tính

TH5: x=4,y=0 thì cũng ko có chuyện đó

Vậy tổng S lớn nhất là 1.

k mình nhé hơi thủ công

Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah

Tuấn Phan Quang
17 tháng 12 2016 lúc 22:23

\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)

\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)

\(=>\)Chỉ còn 2 trường hợp

TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)

\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)

\(< =>S=1\)

TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)

\(=>S=\sqrt{1-1}+\sqrt{3-2}\)

\(=>S=1\)

Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3

Trần Quốc Đạt
18 tháng 12 2016 lúc 10:32

Ủa đề có yêu cầu \(x,y\)nguyên không mà các bạn giải kiểu đó?

\(S=\sqrt{x-1}+\sqrt{2-x}\le\sqrt{\frac{x-1+2-x}{2}}=\sqrt{\frac{1}{2}}\)

Đẳng thức xảy ra khi \(x=\frac{3}{2}\)

Nguyễn Thế Tuấn
Xem chi tiết
卡拉多克
3 tháng 11 2023 lúc 21:02

A là đáp án đúng!

Khánh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 2021 lúc 14:01

Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)

\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)

\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)

Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)

\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)

\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)

\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)

\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)

\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)

\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)

Nguyễn Thế Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2023 lúc 10:16

loading...  loading...  

cuong dang
Xem chi tiết
Nguyễn Tuấn
21 tháng 3 2016 lúc 19:20

căn(x-2)+căn(y-4)>=(x-2+1)/2+(y-4+1)/2=(x-1+y-3)/2=26

Yuki Sakura
Xem chi tiết
konomi
Xem chi tiết
alibaba nguyễn
19 tháng 8 2016 lúc 6:53
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
alibaba nguyễn
19 tháng 8 2016 lúc 7:02
Hai cái còn lại làm tương tự
alibaba nguyễn
19 tháng 8 2016 lúc 7:12
2/ GTNN của A là 0 khi x = -11