Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 23:11

\(x^3+\dfrac{3}{4}x+\dfrac{3}{2}x^2+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

[柠檬]๛Čɦαŋɦ ČŠツ
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 0:14

a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 0:26

a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)

\(=-3+4-\left(-4\right)\)

=-3+4+4

=5

Nguyễn Quốc Huy
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 12:07

1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)

2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)

4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)

7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)

8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)

10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)

11) \(=\left(x+2\right)^3\)

12) \(=\left(x+3\right)^3\)

 

Phạm Mạnh Kiên
Xem chi tiết
Hải Đức
26 tháng 7 2021 lúc 16:56

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

Hải Đức
26 tháng 7 2021 lúc 17:12

Bài 1 

a, `3x-7\sqrt{x}+4=0`            ĐKXĐ : `x>=0`

`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`

`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`

`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`

TH1 :

`3\sqrt{x}-4=0`

`<=>\sqrt{x}=4/3`

`<=>x=16/9` ( tm )

TH2

`\sqrt{x}-1=0`

`<=>\sqrt{x}=1` (tm)

Vậy `S={16/9;1}`

b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17`     ĐKXĐ : `x>=1`

`<=>(1/2-9/2+3)\sqrt{x-1}=-17`

`<=>-\sqrt{x-1}=-17`

`<=>\sqrt{x-1}=17`

`<=>x-1=289`

`<=>x=290` ( tm )

Vậy `S={290}`

 

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 22:44

Bài 1: 

a) Ta có: \(3x-7\sqrt{x}+4=0\)

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

q duc
Xem chi tiết
q duc
27 tháng 8 2023 lúc 12:15

giúp mình với

Ngô Minh Đức
Xem chi tiết
Lê Song Phương
22 tháng 4 2023 lúc 18:06

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

Lương Thùy Trang
22 tháng 4 2023 lúc 16:33

Không=))

Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
19 tháng 9 2021 lúc 20:38

a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)

b) \(P\sqrt{x}=m+\sqrt{x}\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)

\(\Leftrightarrow x-1=m+\sqrt{x}\)

\(\Leftrightarrow m=x-\sqrt{x}-1\)

ngoclinhnguyen
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 8 2021 lúc 15:26

\(\left\{{}\begin{matrix}x\in\left(0;\dfrac{\pi}{2}\right)\\sinx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{6}\Rightarrow cos\dfrac{x}{2}=cos\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)

Cá Lệ Kiều
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 13:05

g: \(\dfrac{\sqrt{x}+3}{x\sqrt{x}+27}=\dfrac{1}{x-3\sqrt{x}+9}\)

h: \(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)

i: \(\dfrac{x-3\sqrt{x}+2}{x-\sqrt{x}}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

k: \(\dfrac{x+7\sqrt{x}+12}{x-9}=\dfrac{\sqrt{x}+4}{\sqrt{x}-3}\)

i: \(\dfrac{x+\sqrt{x}-2}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)