Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Minh Đức
Xem chi tiết
Minh Hiếu
25 tháng 11 2021 lúc 22:06

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\)

⇒ \(\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

\(xy=60\) 

⇒ \(3k.5k=60\)

⇒ \(15k^2=60\)

⇒ \(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

Bạn thay vào nữa là được nha

kenin you
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:29

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:30

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:32

Bài 2: 

b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)

nên \(\dfrac{y}{12}=\dfrac{z}{28}\)

mà \(\dfrac{x}{11}=\dfrac{y}{12}\)

nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)

hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)

mà 2x-y+z=152

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)

Vậy: (x,y,z)=(44;48;112)

Nguyễn Khắc Quang
Xem chi tiết
Chi Nguyễn
Xem chi tiết
Thơ Nụ =))
Xem chi tiết

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 15:14

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

Ngô Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 22:13

\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{4,5}{0,9}=5\\ \Leftrightarrow\left\{{}\begin{matrix}x=5,5\\y=6,5\\z=7\end{matrix}\right.\)

Đào Tùng Dương
26 tháng 11 2021 lúc 22:14

Ta có :

\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) = \(\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) = \(\dfrac{2x-y}{2,2-1,3}\)\(\dfrac{4,5}{0,9}\)= 5

=> x = 5 . 1,1 = 5,5

     y = 5 . 1,3 = 6,5

     z = 5. 1,4 = 7

Vậy ...

Vân Nguyễn Thị
Xem chi tiết
Trên con đường thành côn...
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Trên con đường thành côn...
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

pro
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:34

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)