Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2018 lúc 10:29

Giải bài tập Đại số 11 | Để học tốt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 9:31

Giải bài tập Đại số 11 | Để học tốt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2017 lúc 9:04

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:21

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2019 lúc 13:20

a. Năm số hạng đầu của dãy số

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. Dự đoán công thức số hạng tổng quát của dãy số:

un =√(n+8) (1)

Rõ ràng (1) đúng với n = 1

Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1

⇒ (1) đúng với mọi n ∈ N*.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:19

a) 5 số hạng đầu của dãy số là: 1; 2; 6; 24; 120.

b) \({F_1} = 1,\;{F_2} = 1,\;{F_3} = 2,\;{F_4} = 3,\;{F_5} = 5\;\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:01

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:36

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 22:06

u1=-1

u2=-1+3=2

u3=2+3=5

u4=5+3=8

u5=8+3=11

Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)