Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
12 tháng 3 2023 lúc 20:18

\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )

\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)

\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )

Vậy \(S=\left\{1\right\}\)

b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)

\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy \(S=\left\{-4;1\right\}\)

e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)

\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\) 

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{-2;1\right\}\)

Phương anh Hồ
Xem chi tiết
Akai Haruma
26 tháng 5 2020 lúc 16:43

Lời giải:

a)

\((x-2)(x-3)+2x=(x-2)^2-2\)

\(\Leftrightarrow (x-2)(x-2-1)+2x=(x-2)^2-2\)

\(\Leftrightarrow (x-2)^2-(x-2)+2x=(x-2)^2-2\)

\(\Leftrightarrow x+4=0\Rightarrow x=-4\)

b)

\((x-1)^2+3x(x-1)+7=(2x-1)^2+5(x-3)\)

\(\Leftrightarrow (x-1)^2+3x(x-1)+7=x^2+(x-1)^2+2x(x-1)+5(x-3)\)

\(\Leftrightarrow x(x-1)+7=x^2+5(x-3)\)

\(\Leftrightarrow 6x=22\Rightarrow x=\frac{11}{3}\)

c)

\(5(x^2-2x-1)+2(3x-2)=5(x+1)^2=5(x^2-2x+1)\)

\(\Leftrightarrow -5+2(3x-2)=5\)

\(\Leftrightarrow 3x-2=5\Rightarrow x=\frac{7}{3}\)

d)

\((x-1)(x^2+x+1)-2x=x(x-1)(x+1)=x(x^2-1)\)

\(\Leftrightarrow x^3-1-2x=x^3-x\Leftrightarrow -1-x=0\Rightarrow x=-1\)

Mai Thị Thúy
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2019 lúc 22:39

Đặt \(x^2-2x=a\) pt trở thành:

\(a^2-6a+5=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1\\x^2-2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\pm\sqrt{2}\\x=1\pm\sqrt{6}\end{matrix}\right.\)

thục hà
Xem chi tiết
FL.Hermit
10 tháng 8 2020 lúc 21:00

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Tiến Dũng
10 tháng 8 2020 lúc 21:01

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

Khách vãng lai đã xóa
Vũ Hạnh
10 tháng 8 2020 lúc 21:02

a/ \(\left(x-1\right)\left(2x+5\right)\left(x^2+2\right)=0\)

Vì \(x^2\ge0\Rightarrow x^2+2\ge2>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Thái Thịnh
6 tháng 2 2022 lúc 21:44

d) \(PT\Leftrightarrow x\left(2x-7\right)-4\left(x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{7}{2};4\right\}\)

e) \(PT\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{7;1\right\}\)

f) \(PT\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{1;3\right\}\)

Minh Hiếu
6 tháng 2 2022 lúc 21:42

\(d,x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(x-2\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

 

Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 21:43

d: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

e: =>(2x-5-x-2)(2x-5+x+2)=0

=>(x-7)(3x-3)=0

=>x=7 hoặc x=1

f: =>x(x-1)-3(x-1)=0

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 21:38

a: =(x-3)(2x+5)

b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)

=>(x-2)(5-x)=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

Trần Đức Huy
6 tháng 2 2022 lúc 21:40

TK

c)=\(\left(x-1\right)^3=0\)=>x=1

Big City Boy
Xem chi tiết