Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải PT và HPT
a) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\)
b) \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)
Giải pt sau:
a. \(\sqrt{2x^2-3x-11}=\sqrt{x^2-1}\)
b. \(\sqrt{2x^2+3x-5}=x+1\)
c. \(\sqrt{\left(x+2\right)^2}=\sqrt{3x^2-5x+14}\)
d. \(\sqrt{\left(x-1\right)\cdot\left(2x-3\right)}=-x-9\)
1\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x^3y^3+7\left(x+1\right)\left(y+1\right)=31\end{matrix}\right.\)
2 giải pt \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
Giải PT : \(\left(\sqrt{x+4}-\sqrt{x-1}\right)\left(\sqrt{x^2+3x-4}+1\right)=5\)
giải pt \(\left(x+1\right)\left(2\sqrt{x^2+3}-x^2\right)+\sqrt[3]{3x^2+5}=5x+3\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải PT: \(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2019\)
Giải pt:
\(\sqrt{x\left(3x+1\right)}-\sqrt{x\left(x-1\right)}=2\sqrt{x^2}\)