Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shoppe pi pi pi pi
Xem chi tiết
Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 11:38

a: Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

=>E là trung điểm của AC

b: Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//BM và DE=BM

Xét tứ giác BDEM có

DE//BM

DE=BM

=>BDEM là hình bình hành

Thái Hòa Nguyễn
Xem chi tiết
Nguyễn Ngọc Anh Minh
10 tháng 10 2023 lúc 14:49

A B C D E M N K

a/

Xét tg ABC có

\(AB\perp AC\) (gt)

\(ME\perp AC\) (gt)

=> ME//AB (cùng vg với AC)

\(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}\) (Talet) Mà 

CM = BM \(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}=1\Rightarrow CE=AE\) => E là trung điểm AC

C/m tương tự ta cũng có D là trung điểm AB

b/

Xét tg ABC có

AD=BD (cmt); AE=CE (cmt) => DE là đường trung bình của tg ABC

=> DE//BC => DE//BM

\(\Rightarrow DE=\dfrac{BC}{2}\)

Ta có

\(BM=CM=\dfrac{BC}{2}\)

=> DE=BM

=> BDEM là hình bình hành (Tứ giác có 1 cặp cạnh đối //  và = nhau là hình bình hành)

c/

 

 

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 1:00

Chọn D

Bé Đầu Đất
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:02

Câu 1: B

Câu 2: B

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 16:30


a)

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

 Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: \(\frac{{BI}}{{BD}} = \frac{{BF}}{{BE}}\) (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ∆ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3}\)  hay \(\frac{{BI}}{{\frac{1}{2}BD}} = \frac{{2BI}}{{BD}} = \frac{2}{3}\)

Do đó \(\frac{{BI}}{{BD}} = \frac{1}{3}\) (2)

Từ (1) và (2) suy ra \(\frac{{BF}}{{BE}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\) hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\).

Chứng minh tương tự ta cũng có \(\frac{{D'E}}{{D'F}} = \frac{{D'J}}{{D'B'}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\)  hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\)

Do đó \(\frac{{BF}}{{EF}} = \frac{{D'E}}{{EF}} = \frac{1}{2}\) nên BF = D’E = ½ EF.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2019 lúc 5:47

phamthiminhanh
Xem chi tiết
Tiên Nguyễn
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 21:18

a: Ta có: I và D đối xứng nhau qua AB

nên AB là đường trung trực của DI

Suy ra: AD=AI

hay AB là tia phân giác của \(\widehat{IAD}\)

Ta có: I và E đối xứng nhau qua AC

nên AC là đường trung trực của IE

Suy ra: AI=AE

hay AC là tia phân giác của \(\widehat{EAI}\)

Ta có:  \(\widehat{EAD}=\widehat{EAI}+\widehat{DAI}\)

\(=2\left(\widehat{BAI}+\widehat{CAI}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra:E,A,D thẳng hàng

mà AD=AE(=AI)

nên A là trung điểm của DE