2002x1999-2003x999
__________________
2004x999+1001
1/1001+1/1001+...+1/1001
(có 1001 phân số 1/1001 và chỉ có mỗi phân số 1/1001 thôi nhé)
lấy:1/1001x1001=1
nhầm nhé 1001.1/1001=1
Vì có 1001 phân số 1/1001 cộng với nhau nên
1001+1/1001=bằng 1001,000999
Giúp mình với ạ!
Tính: P(x)=x8-1001. x7+1001. x6- 1001 .x5+...+1001. x2- 1001. x + 250 tại x=1000
Ta có:\(1001=1000+1=x+1\)
\(x^8-1001x^7+1001x^6+...+1001x^2-1001x+250\\ =x^8-\left(x+1\right)x^7+\left(x+1\right)x^6+...+\left(x+1\right)x^2-\left(x+1\right)x\\ =x^8-x^8-x^7+x^7+x^6+...+x^3+x^2-x^2-x+250\\ =-x+250=-1000+250\\ =-750\)
1001 = ??? × ???
Ko phải 1001 = 1001 × 1
\(1001=77\cdot13\)
\(1001=91\cdot11\)
\(1001=143\cdot7\)
hok tốt
so sanh \(\frac{1001^{1001}}{1002^{1002}}\)và \(\frac{1001^{1001}+101101}{1002^{1002}+101202}\)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tổng A có 1000 số hạng.
Vậy
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
So sánh :
A = 10011001/10021002 và
B = 10011001+ 101101/10021002+101202
\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)
\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)
Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)
\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)
=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)
=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
=> \(B>A\)
Mình cảm ơn ạ! Hi vọng sau này ban sẽ giúp mình nữa nha ^^
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+\dfrac{1001}{1000^3+3}+.....+\dfrac{1001}{1000^2+100}\)Chứng minh rằng 1<A2<4
A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+....+\frac{1001}{1000^2}+1000\)
- 16 + 8 + 13 = 1001 - x + 1001
5=1001−𝑥+1001
5=2002−𝑥
5=−𝑥+2002
5−2002=−𝑥+2002−2002
−1997=−𝑥
𝑥=1997
\(-16+8+13=1001-x+1001\)
⇔\(5=2002-x\)
⇔\(x=1997\)
\(\text{- 16 + 8 + 13 = 1001 - x + 1001}\\ 5=1001-x+1001\\ 5=2002-x\\ 2002-x=5\\ x=2002-5\\ x=1997\)