Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bap xoai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 15:27

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Từ (1) và (2) suy ra:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2019 lúc 5:32

Chọn A.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2017 lúc 12:54

Chọn A.

Ta có ABCD là hình bình hành => AB//CD

Do đó (SB,CD) = (SB,AB) = SBA

Vì SA ⊥ (ABCD) => SA ⊥ AB =>  ∆ SAB vuông tại A.

Xét tam giác vuông SAB ta có: 

Vậy (SB;CD) = 60 °

Bé Đầu Đất
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:02

Câu 1: B

Câu 2: B

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 18:29

1: Số mặt bên là 4

\(SAB;SAD;SBC;SCD\)

2: Số cạnh đáy là 4

AB,BC,CD,DA

3: SA và BC là hai đường thẳng chéo nhau

4: 4 đỉnh: A,B,C,D

5: Có 7 mặt: \(SAB;SAD;SBC;SCD;SAC;SBD;ABCD\)

6C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2017 lúc 3:18

Chọn đáp án A

Áp dụng công thức

Suy ra  V S . A B C D = a 2 2 ( đ v t t )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2019 lúc 3:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2017 lúc 11:49

Đáp án D

Tồn tại 5 mặt phẳng thỏa mãn đề bài là:

-        Mp đi qua trung điểm AD,BC,SC,SD

-        Mp đi qua trung điểm CD,AB,SC,SB

-        Mp đi qua trung điểm AD,BC,SB,SA

-        Mp đi qua trung điểm CD,AB,SA,SD

-        Mp đi qua trung điểm SA,SB,SC,SD

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2017 lúc 16:49

Đáp án B

Phương pháp:

Gọi các trung điểm của các cạnh bên và các cạnh đáy.

Tìm các mặt phẳng cách đều 5 điểm S, A, B, C, D.

Cách giải:

Gọi E; F; G; H lần lượt là trung điểm của SA, SB, SC, SD và M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA .

Ta có thể tìm được các mặt phẳng cách đều 5 điểm S, A, B, C, D là (EFGH); (EFNQ); (GHQN); (FGPM); (EHPM)