Cho hàm số y = x 3 - 3 x 2 + 6 x + 5 Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là
A. y=3x+9.
B. y=3x+3.
C. y=3x+12.
D. y=3x+6.
Cho hàm số \(y=\dfrac{x}{x-1}\). Viết phương trình tiếp tuyến của đồ thị hàm số, biết rằng khoẳng cách từ điểm \(B\left(1;1\right)\) đến tiếp tuyến có giá trị lớn nhất.
A. \(y=x-4\)
B. \(y=x+3\)
C. \(y=-x+5\)
D. \(-x+4\)
Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có :
PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\)
K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)
= \(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\) \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)
" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
Suy ra : y = -x hoặc y = -x + 4
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử \(x_0\) là hoành độ tiếp điểm
Phương trình tiếp tuyến d:
\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)
\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)
\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)
Dấu "=" xảy ra khi:
\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)
Cho hàm số \(y=\dfrac{x^3}{3}-x^2+2x+1\). Viết phương trình tiếp tuyến của (C)
a) tại giao điểm của (C) với trục tung
b) vuông góc với đường thẳng \(y=-\dfrac{x}{5}+2\)
Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v
a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)
\(y'=x^2-2x+2\)
\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)
b/ \(y'=x^2-2x+2\)
Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)
Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)
\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)
P/s: Check lại số hộ mình ạ!
a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
a.
\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)
b.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)
\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)
Bài 4: Cho hàm số y = - x ^ 3 + 3x ^ 2 + 9x + 5 (C). Trong tất cả các tiếp tuyến của đồ thị (C), hãy tìm tiếp tuyến có hệ số góc lớn nhất.
Ta có y’ = -3x2 – 6x + 9
Gọi xo là hoành độ tiếp điểm của tiếp tuyến, ta có f’(xo) = -3xo2 – 6xo + 9
⇔ f’(xo) = -3(xo2 + 2xo + 1) + 12 = -3(xo + 1)2 + 12 ≤ 12
Từ đó suy ra maxf’(xo) = 12 tại xo = -1.
Với xo = -1 ⇒ yo = -16, phương trình tiếp tuyến cần tìm: y = 12x - 4.
Chúc bn học tốt
Cho hàm số: y = \(\dfrac{x+3}{x-3}\) (C), I (4; -6); A ∈ (d): x = -1 sao cho từ A kẻ được 2 tiếp tuyến AM, AN tới (C) và d(I; MN)Max . Tìm tọa độ A
Cho hàm số \(y=x^3+3x^2-6x+1\) (C)
Viết pt tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng \(y=-\dfrac{1}{18}x+1\) ?
\(y'=3x^2+6x-6\)
Tiếp tuyến vuông góc đường thẳng đã cho nên có hệ số góc thỏa mãn:
\(k.\left(-\dfrac{1}{18}\right)=-1\Rightarrow k=18\)
\(\Rightarrow3x^2+6x-6=18\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=9\\x=-4\Rightarrow y=9\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=18\left(x-2\right)+9\\y=18\left(x+4\right)+9\end{matrix}\right.\)
Cho hàm số (C): y = x + 2 x - 2 . Viết phương trình tiếp tuyến đi qua A(-6; 5) của đồ thị (C).
A: y = x + 1
B: y = -x - 1
C: y = -x + 1
D: Đáp án khác
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
A. ‒3.
B. 9.
C. ‒9.
D. 72.
Ta có: \(y'3x^2-3.2x=3x^2-6x\).
Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left(-1;4\right)\) có hệ số góc bằng:\(y'\left(-1\right)=3.\left(-1\right)^2-6.\left(-1\right)=9\).
\(\Rightarrow B\)
cho hàm số \(y=x^3-3x^2+2\), Viết phương trình tiếp tuyến song song đường thẳng -9x+y-5=0
\(-9x+y-5=0\Leftrightarrow y=9x+5\)
\(\Rightarrow\) Đường thẳng d có hệ số góc bằng 9
\(y'=3x^2-6x\)
Tiếp tuyến song song d nên có hệ số góc thỏa mãn \(9.k=-1\Rightarrow k=-\dfrac{1}{9}\)
\(\Rightarrow3x^2-6x=-\dfrac{1}{9}\Rightarrow x=...\)
Nghiệm xấu quá, bạn hỏi lại giáo viên coi đề chính xác không? Pt đường thẳng d là \(-x+9y-5=0\) thì có lý hơn (giải ra hoành độ tiếp điểm không bị lẻ)
1)Viết phương trình tiếp tuyến của đường cong (C):y=f(x)=x^3-2x biết: a)tiếp tuyến vuông góc với trục Ox. b)Tại giao điểm của (C) với các trục tọa độ.
2)Cho hàm số :y=f(x)=x-1/x có đồ thị là đường cong (C):
a) Viết pt tt với (C),biết tt song song với dt y=2x và tiếp điểm có hoành độ âm.
b)CMR trên (C) không thể tồn tại 2 điểm M,N để tiếp tuyến tại 2 điểm này vuông góc với nhau.
c)CMR mọi tiếp tuyến của (C) đều không thể đi qua gốc tọa độ O.
3)Tìm tất cả các điểm trên đồ thị (C):y=f(x)=(2x+3)/(x+2) sao cho tại điểm đó tt của (C) cắt các đường thằng (d1):x=-2 và (d2):y=2 lần lượt tại A và B sao cho AB gần nhất.
4)Cho hàm số y=f(x)=sin2x+1 (x>=0) và =2x+1 (x<0) .Tính đạo hàm của hàm số tại Xo=0 bằng định nghĩa.