Trong các số phức z thỏa mãn | z - 1 - 2 i | + | z + 2 - 3 i | = 10 . Modun nhỏ nhất của số phức z là
A. 9 10 10
B. 3 10 10
C. 7 10 10
D. 10 5
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Trong các số phức z thỏa mãn | z - 2 + i | = | z ¯ + 1 -4i | , tìm số phức có mô-đun nhỏ nhất.
A. z = 1
B. z = 1 - i
C. z = -1 - i
D. z = 2 - i
Chọn C.
Giả sử z = a+ bi. Khi đó:
z – 2 + i = ( a - 2) + ( b + 1) i và
Vậy z = -1 - i thỏa mãn đề bài.
Xét các số phức z thỏa mãn điều kiện z - 1 + i = 2 Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 -i là
A. đường tròn tâm I(-3;2), bán kính R = 2.
B. đường tròn tâm I(3;-2), bán kính R = 2.
C. đường tròn tâm I(1;0), bán kính R =2.
D. đường tròn tâm I(1;-1), bán kính R = 2.
Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn 2|z-i|=|z- z +2i| là:
A. Đường tròn tâm I(0;1), bán kính R = 1
B. Đường tròn tâm I( 3 ;0), bán kính R = 3
C. Parabol y = x 2 4
D. Parabol x = y 2 4
Xét các số phức z thỏa mãn z + 1 - i + z - 3 + i = 2 5 . Tìm giá trị nhỏ nhất của P = z + 2 + 4 i .
A. P m i n = 11 5 5
B. P m i n = 2 + 2
C. P m i n = 5
D. P m i n = 5 - 2
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Trong các số phức z thỏa mãn |z - 3i| + | i z ¯ + 3| =10 , tìm số phức z có mô-đun nhỏ nhất.
A. z = 2 hoặc – 2
B. z= 3 hoặc – 3
C. z = 4 hoặc – 4
D. tất cả sai
Chọn C.
Áp dụng công thức:
Ta có:
Giải bất phương trình 100 ≤ 4 ta có ta có 0 ≤ |z| ≤ 4
Vậy min|z| = 4 đạt được khi