Cho f(x) là một đa thức thõa mãn I = l i m x → 1 f x - 16 x - 1 = 24 . Tính I = l i m x → 1 f x - 16 x - 1 2 f x + 4 + 6 .
A. I = 24
B. I = + ∞
C. I = 2
D. I = 0
Cho đa thức f(x) thõa mãn điều kiện:
( x -1) . f(x) = ( x+4) . f( x +8), với mọi x thuộc R
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố.
cho đa thức f(x) thõa mãn x.f(x+1)=(x+2).f(x). chứng minh rằng f(x) có ít nhất hai nghiệm là 0 và -1
\(\text{Thay }x=0,\text{ ta có: }0.f\left(1\right)=2f\left(0\right)\Rightarrow f\left(0\right)=0\)
\(\text{Thay }x=-1;\text{ }-1f\left(0\right)=f\left(-1\right)\Rightarrow f\left(-1\right)=-f\left(0\right)=0\)
Cho đa thức f(x) xác định vs mọi x thõa mãn:
x. f (x) + 1 = ( x2 - 25 ) . f(x)
Chứng tỏ đa thức f(x) có 3 nghiệm
Cho đa thức f(x) thõa mãn f(x) +x.f (-x)=x +2015 với mọi giá trị của x .Tính f(-x)
tìm tất cả các đa thức f[x] có hệ số nguyên thõa mãn điều kiện [x+1].f[x]=[x-2].f[x+2] và f[0]=1
tìm tất cả các đa thức f[x] có hệ số nguyên thõa mãn điều kiện [x+1].f[x]=f[x+2].[x-2] và f[0]=1
Cho f(x) = ( m-1 ) x +2m-3 .Tìm m để đa thức f(x) có nghiệm là x =-2
a) Tính giá trị của đa thức f(x)=x^6 - 2019x^5 + 2019x^4 - 2019x^3 + 2019x^2 - 2019x + 1 tại x=2018.
b) Cho đa thức f(x)=ax^2 + bx + c với các hệ số a, b, c thõa mãn 11a - b + 5c =0. Chứng minh rằng f(1) và f(-2) không thể cùng dấu.
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
b) -\(Có\) :\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c=a+b+c\\f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3.f\left(1\right)=3\left(a+b+c\right)=3a+3b+3c\\2.f\left(-2\right)=2\left(4a-2b+c\right)=8a-4b+2c\end{cases}}\)
- Xét \(3.f\left(1\right)=3a+3b+3c\)
\(=\left(11a-8a\right)+\left(4b-b\right)+\left(5c-2c\right)\)
\(=11a-8a+4b-b+5c-c\)
\(=\left(11a-b+5c\right)-\left(8a-4a+2c\right)\)
\(=0-2.f\left(-2\right)\)
\(=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right)=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right),2.f\left(-2\right)\)trái dấu nhau
\(\Rightarrow f\left(1\right)\)và \(f\left(-2\right)\)không cùng dấu \(\left(đpcm\right)\)
Bài 1 Tìm nghiệm của đa thức f(x)=x3 -2x
b) Xác định đa thức một biến f(x), Biết đa thức có bậc 2 , hệ số cao nhất là 9, nghiệm của đa thức f(x) là \(\frac{2}{3}\) và f(-1)=25
Lời giải:
a)
$f(x)=x^3-2x=0$
$\Leftrightarrow x(x^2-2)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ x^2-2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\pm \sqrt{2}\end{matrix}\right. \)
Vậy tập nghiệm của đa thức $f(x)$ là $\left\{0;\pm \sqrt{2}\right\}$
b)
Gọi đa thức cần tìm có dạng $f(x)=9x^2+ax+b$
Nghiệm của đa thức là $\frac{2}{3}$ suy ra:
$f(\frac{2}{3})=4+\frac{2}{3}a+b=0(1)$
$f(-1)=25\Leftrightarrow 9-a+b=25(2)$
Từ $(1);(2)\Rightarrow a=-12; b=4$
Vậy đa thức cần tìm là $9x^2-12x+4$