Biết rằng đồ thị hàm số y = 2 x 3 - 5 x 2 + 3 x + 2 chỉ cắt đường thẳng y = -3 x + 4 tại một điểm duy nhất M (a; b). Tổng a + b bằng
A. -6 .
B. -3
C. 6
D. 3.
tìm tham số thỏa mãn yêu cầu bài toán:
a) tìm m biết đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\) có đường tiệm cận ngang đi qua điểm A (-1;3)
b) biết rằng đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\) có đường tiệm cận ngang là đường thẳng y = -2
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
=>Đường thẳng y=2m+3 là đường tiệm cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)
Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3
=>2m=0
=>m=0
b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
=>\(m^2-3m=-2\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>m=1 hoặc m=2
Biết rằng đồ thị hàm số y = f(x) = 2x + 5 và đồ thị hàm số y = f(x) = x + 3 cắt nhau tại điểm M. Không vẽ đồ thị, hãy tìm tọa độ của điểm M.
M thuộc đồ thị hs y = 2x + 5 => yM = 2xM + 5
M thuộc đths y = x + 3 => yM = xM+ 3
=> 2xM + 5 = xM + 3 => 2xM - xM = 3 -5 => xM = -2
=> yM = xM + 3 = -2 + 3 = 1
Vậy M(1;-2)
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b\
b, khi x = 1 + √x thì y = -4 - √3
cho hàm số y = -ax + 5 hãy xác định hệ số a biết rằng
a, đồ thị hàm số song song với đồ thị y = ax + b
b, khi x = 1 + \(\sqrt{x}\) thì y = -4 - \(\sqrt{3}\)
Cho hàm số y=f(x)=2/3.x
a) Tìm f(7); f(-5/4)
b)Tìm x khi y=10
c)Tìm x khi f(x)=8
d)Vẽ đồ thị hàm số trên.
e) Hỏi điểm P(9;16) có thuộc đồ thị hàm số y=2/3 x ko?
g) Tìm điểm K và H trên đồ thị hàm số y=2/3x biết xK =6,yH =4.
Vẽ đồ thị hàm số y=|x^3+3x^2−2| biết đồ thị hàm số y=x^3+3x^2−2 là
1. tìm x, y biết : x/y =3/5 và 3x +y = 28
2.cho hàm số y =f(x) =ax
*khi a=2
a.vẽ đồ thị hàm số
b. tính f(-0,5);f(3/4)
*tìm hệ số a biết đò thị hàm số đi qua điểm A(-4;2)
\(1,\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{3x+y}{9+5}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ 2,\\ a,a=2\Rightarrow y=f\left(x\right)=2x\\ b,f\left(-0,5\right)=2\left(-0,5\right)=-1\\ f\left(\dfrac{3}{4}\right)=2\cdot\dfrac{3}{4}=\dfrac{3}{2}\\ c,\text{Thay }x=-4;y=2\Rightarrow-4a=2\Rightarrow a=-\dfrac{1}{2}\)
Ta có: x/y=3/5 ⇒ x/3=y/5
Theo tính chất của dãy tỉ số bằng nhau ta có:x/3=y/5=3x/3.3=y/5= 3x+y9/y9+5=28/14=2
Do đó:
x/3=2 ⇒x=2.3=6
y/5=2 ⇒y=2.5=10
Vậy x=6 và y=10.
Bài 1 a) Khảo sát và vẽ đồ thị hàm số y=x³-2x²+x (C) b) từ đồ thị (C) suy ra đồ thị các hàm số sau: y=|x³-2x²+x|, y=|x|³ -2x²+|x| Bài 2: Khảo sát và vẽ đồ thị hàm số y=x⁴-2x²-3 (C). Từ đồ thị (C) suy ra đồ thị hàm số y=|y=x⁴-2x²-3|
a) Xác định hàm số y=m|x|, biet rằng đồ thị của hàm số đi qua điểm A(-3;1).
b) Điểm M(3√3;√3); N(-6√2; -2√2) có thuộc đồ thị của hàm số trên không?
c) Tim toạ độ của điểm K, R thuộc đồ thị hàm số trên biết hoành độ của điểm K bằng-9, tung độ của điểm R bằng 5.
d) Vẽ đồ thị của hàm số trên.