Có bao nhiêu số nguyên m để đồ thị C m : y = x − 2 x 2 − m x − m 2 − 3 cắt trục hoành tại ba điểm phân biệt?
A.3
B.1
C.2
D.4
Có bao nhiêu số nguyên m thuộc [-20;20] để đồ thị hàm số y=mx^4+(m^2-9)x^2+1 có ba điểm cực trị?
A. 20. B. 19. C. 18. D. 17.
Có bao nhiêu số nguyên m thuộc [-20;20] để đồ thị hàm số
y=mx4+(m2-9)x2+1 có ba điểm cực trị?
A. 20. B. 19. C. 18. D. 17.
y' = 4mx3 + 2(m2-9)x
hàm số có 3 điểm cực trị => m ≠ 0 và m.(m2-9)<0
=> x < -3 và 0 < x < 3
=> x ∈ {-20;-19;-18;...;-4;1;2} => 19 giá trị
Cho hàm số y=f(x) liên tục trên tập Rvà có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình
f
2
(
x
)
-
(
m
-
1
)
f
(
x
)
+
m
-
2
có 12 nghiệm phân biệt?
Cho đồ thị hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = f ( x + 100 ) + m 2 có 5 điểm cực trị?
A. 0.
B. 1.
C. 2.
D. 4.
Cho hàm số y=x4-2(m+3)x2+m+5 có đồ thị (C). Có bao nhiêu giá trị nguyên của m để (C) tiếp xúc với trục hoành
A. 0
B. 1
C. 2
D. 3
Cho hàm số y= f(x)= ax^2 + bx+c có đồ thị như hình vẽ bên.( dưới bình luận) Có bao nhiêu giá trị nguyên m để phương trình f^2(|x|)+(m- 2019) f (|x|)+m– 2020 =0 có 6 nghiệm phân biệt
Có bao nhiêu giá trị m nguyên để đồ thị hàm số y = x - 2 x 2 - m x + m có đúng một tiệm cận đứng
A. 1
B. 2
C. 3
D. 4
Cho đồ thị hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = f x + 100 + m 2 có 5 điểm cực trị?
A. 0
B. 1
C. 2
D. 4
Chọn đáp án C
Hàm số y=f(x+100) có đồ thị là đồ thị hàm số y=f(x) tịnh tiến sang trái 100 đơn vị
Dựa vào đồ thị ta thấy đồ thị hàm số y=f(x) có 3 điểm cực trị.
Khi tịnh tiến sang trái 100 đơn vị thì số điểm cực trị hàm số y=f(x+100) vẫn là 3 điểm cực trị.
Có tất cả bao nhiêu số nguyên m để đồ thị hàm số y = x + m x 2 + x + 1 có đường tiệm cận ngang?
A. 1.
B. 2.
C. 0.
D. vô số.
33. Có bao nhiêu số nguyên m thuộc (-2018;2018) để đồ thị hs y = \(\dfrac{x^3+m}{x^3+mx}\) có 4 đường tiệm cận.
Đề không nói tiệm cận đứng/ ngang/ xiên à bạn?
Bậc tử bằng bậc mẫu nên ĐTHS không có tiệm cận xiên
\(\lim\limits_{x\rightarrow\infty}\dfrac{x^3+m}{x^3+mx}=\lim\limits_{x\rightarrow\infty}\dfrac{1+\dfrac{m}{x^3}}{1+\dfrac{m}{x^2}}=1\)
\(\Rightarrow y=1\) là tiệm cận ngang
ĐTHS có 4 tiệm cận khi nó có 3 TCĐ
\(x^3+m=0\Rightarrow x=-\sqrt[3]{m}\)
\(x^3+mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-m\end{matrix}\right.\)
\(\Rightarrow\)Hàm có 3 TCĐ khi \(m>0\)
Cho hàm số y=f(x) liên tục trên tập ℝ và có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình f 2 x - m - 1 f x + m - 2 = 0 có 12 nghiệm phân biệt?
A. Không tồn tại m
B. 1
C. 2
D. 3