Tìm m để hàm số y = - x 3 + m x nghịch biến trên ℝ
A. m < 0
B. m > 0
C. m ≤ 0
D. m ≥ 0
Tìm tất cả các tham số m để hàm số y = 3 ( m - 1 ) x - ( 2 m + 1 ) nghịch biến trên ℝ
A. 2 5 ≤ m ≤ 4
B. m ≤ 2 5
C. m ≤ 4
D. 2 5 < m < 4
Đáp án B
Ta có y ' = 3 ( m - 1 ) + ( 2 m + 1 ) sin x để hàm số nghịch biến trên ℝ thì y ' ≤ 0 với mọi x xét BPT
3 ( m - 1 ) + ( 2 m + 1 ) sin x ≤ 0 Nếu m = - 1 2 BPT luôn đúng. Với m > - 1 2 BPT ⇔ sin x ≤ 3 ( 1 - m ) 2 m + 1 để hàm số luôn nghịch biến với mọi x thì 3 ( 1 - m ) 2 m + 1 ≥ 1 ⇒ - 1 2 < m ≤ 2 5 . Với m < - 1 2 BPT ⇔ sin x ≥ 3 ( 1 - m ) 2 m + 1 để hàm số luôn nghịch biến với mọi x thì 3 ( 1 - m ) 2 m + 1 ≤ - 1 ⇒ m < - 1 2
Kết hợp hai trường hợp ta có m ≤ 2 5
Tìm điều kiện m ∈ ℝ để hàm số y = cos x - 2 cos x - m nghịch biến trên 0 ; π 3 .
bài1 tìm m để các hàm số
a) y=(m-1)x^2 đông biến khi x>0
b) y=(3-m)x^2 nghịch biến x>0
c) y=(m^2-m)x^2 nghịch biến khi x>0
bài 2/ cho hàm số y=(m^2+1)x^2 (m là tham số ) . hỏi khi x<0 thì hàm số trên đồng biến hay nghịch biến
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Bài 2
Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0
Tìm tất cả các giá trị tham số m để hàm số y = 1 3 ( m - 1 ) x 3 - ( m - 1 ) x 2 - x + 1 nghịch biến trên ℝ
A. m ≥ 1 m ≤ 0
B. 0 ≤ m ≤ 1
C. m ≥ 1 m ≤ - 3
D. - 3 ≤ m ≤ 1
Đáp án là B.
Ta có y ' ( x ) = ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1
TH1. m - 1 = 0 ⇔ m = 1 .Khi đó
y , = - 1 < 0 , ∀ x ∈ ℝ .Nên hàm só luôn nghịch biếến trên ℝ .
TH2. m - 1 ≢ 0 ⇔ m ≢ 1 .Hàm số luôn nghịch biến trên ℝ khi
y , ≤ 0 , ∀ x ∈ ℝ ⇔ ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1 ≤ 0 , ∀ x ∈ ℝ ⇔ m - 1 < 0 ∆ ' ≤ 0 ⇔ m < 1 m ( m - 1 ) ≤ 0 ⇔ 0 ≤ m ≤ 1 . Kết hợp ta được 0 ≤ m < 1 .
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Cho m, n không đồng thời bằng 0. Tìm điều kiện của m, n để hàm số y = msin x - ncos x - 3 x nghịch biến trên ℝ .
Tìm số các giá trị nguyên của tham số m ∈ ( - ∞ ; + ∞ ) để hàm số y = ( 2 m - 1 ) x - ( 3 m + 2 ) cos x nghịch biến trên ℝ .
A. 3
B. 4
C. 4014
D. 218
Cho hàm số: y = ( m + 3 )x + m - 2
a) Tim m để y là hàm số bậc nhất
b) Tìm m để y là hàm số nghịch biến
c) Tìm m để hàm số trên đồng biến
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
câu c đâu rui bạn oi
a; 1 số < hoặc =2 b;PT<0 rồi giải c;PT>0 rồi giải
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = ( m - 3 ) x - ( 2 m + 1 ) cos x luôn nghịch biến trên ℝ ?
A. - 4 ≤ m ≤ 2 3
B. m ≥ 2
C. m > 3 m ≠ 1
D. m ≤ 2