Tìm phương trình tiếp tuyến của đồ thị hàm số y = x 3 − 3 x − 2 tại điểm có hoành độ bằng 0.
A. y = 3 x + 2 .
B. y = 3 x − 2 .
C. y = − 3 x − 2 .
D. y = − 3 x + 2 .
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Cho hàm số y = f(x) = a x + b c x + d ( a,b,c,d ∈ ℝ , - d c ≠ 0) đồ thị hàm số y= f’(x) như hình vẽ.
Biết đồ thị hàm số y= f(x) cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?
A. y = x - 3 x + 1
B. y = x + 3 x - 1
C. y = x + 3 x + 1
D. y = x - 3 x - 1
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
Viết phương trình tiếp tuyến của đồ thị hàm số sau:
a) \(y = {x^3} - 3{x^2} + 4\) tại điểm có hoành độ \({x_0} = 2\)
b) \(y = \ln x\) tại điểm có hoành độ \({x_0} = e\)
c) \(y = {e^x}\) tại điểm có hoành độ \({x_0} = 0\)
a) \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)
Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0
b) \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)
Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)
c) \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)
Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) tại điểm có hoành độ bằng 1.
Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)
Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)
Phương trình tiếp tuyến của đồ thị hàm số y = x + 1 x - 2 tại điểm có hoành độ bằng 3 là
A. y = 3x + 13
B. y = 3x - 5
C. y = -3x - 5
D. y = -3x + 13
Phương trình tiếp tuyến của đồ thị hàm số y = x - 1 x + 2 tại điểm có hoành độ bằng -3 là:
A. y = 3 x + 13
B. y = - 3 x - 5
C. y = 3 x + 5
D. y = - 3 x + 13
Phương trình tiếp tuyến của đồ thị hàm số trên tại điểm có hoành độ bằng -3 là:
Chọn: A
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3}\)
a) Tại điểm \(\left( { - 1;1} \right)\);
b) Tại điểm có hoành độ bằng 2.
Ta có: \({\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\)
a) Ta có điểm \(M\left( { - 1;1} \right)\) không thuộc đồ thị hàm số \(\left( C \right)\) nên không có phương trình tiếp tuyến tại điểm \(M\left( { - 1;1} \right)\).
b) Với \({x_0} = 2 \Leftrightarrow {y_0} = {2^3} = 8\). Vậy \(N\left( {2;8} \right)\).
Tiếp tuyến của \(\left( C \right)\) tại điểm \(N\left( {2;8} \right)\) có hệ số góc là: \(f'\left( 2 \right) = {3.2^2} = 12\).
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(N\) là:
\(y - 8 = 12\left( {x - 2} \right) \Leftrightarrow y = 12x - 24 + 8 \Leftrightarrow y = 12{\rm{x}} - 16\).
Cho hàm số \(y=-x^3+3x-2\) (C)
a) Khảo sát và vẽ đồ thị hàm số
b) Tìm m để phương trình: \(x^3-3x+2m+1=0\) có 3 nghiệm phân biệt
c) Viết phương trình tiếp tuyến với (C) tại điểm có hoành độ \(x=0\)
Tiếp tuyến của đồ thị hàm số y = x - 1 x + 2 tại điểm có hoành độ x = -3 có phương trình
A. y = - 3 x - 5
B. y = - 3 x + 13
C. y = 3 x + 13
D. y = 3 x + 5