Cho hình chóp S.ABC có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a . Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 2 5 a 5
B. 5 a 3
C. 2 2 a 3
D. 5 a 5
Cho hình chóp S.ABC có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 5 a 3
B. 2 2 a 3
C. 5 a 5
D. 2 5 a 5
Cho hình chóp S.ABC có đáy là tam giác cân, AB=2a, B A C ^ = 120 ∘ ,SA=SB và mặt phẳng (SAB) vuông góc với mặt phẳng đáy, thể tích khối chóp đã cho bằng a 3 4 . Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng
A. 21 a 7
B. 21 a 14
C. 15 a 10
D. 15 a 5
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên bằng SA vuông góc với đáy, SA=a. Tính khoảng cách từ A đến mặt phẳng (SBC)?
A. d = a 3 2
B. d = a 2 2
C. d = a 6 2 .
D. d = a 6 3
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB = a, SA vuông góc với mặt phẳng đáy và SA = 3a. Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ điểm G đến mặt phẳng (SBC) theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và S A = A B = 3 . Gọi G là trọng tâm của tam giác SAB. Khoảng cách từ G đến mặt phẳng (SBC) bằng
A. 6 3
B. 6 6
C. 3
D. 6 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S . A B C nhỏ nhất.
A. cos α = 2 2
B. cos α = 1 3
C. cos α = 3 3
D. cos α = 2 3
Vì AB, AC, AS đôi một vuông góc nên
Chọn C.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc
với đáy, SA=a. Tính khoảng cách từ A tới mặt phẳng (SBC).
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc với đáy, S A = a . Tính khoảng cách từ A tới mặt phẳng (SBC).
A. d = a 3 2
B. d = a 2 3
C. d = a 6 2
D. d = a 6 3
Đáp án A
Gọi I là trung điểm của BC,H là hình chiếu của A xuống SI.
Ta có: B C ⊥ A H B C ⊥ S A ⇒ B C ⊥ S A I ⇒ A H ⊥ S B C
Ta có: A I = 2 a 2 − a 2 = a 3
1 A H 2 = 1 S A 2 + 1 A I 2 = 1 a 2 + 1 a 3 2 = 4 3 a 2 ⇒ A H = a 3 2
d A ; S B C = A H = a 3 2 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB =a, BC =a 3 Biết rằng SA vuông góc với mặt phẳng đáy và diện tích xung quanh của khối chóp S.ABC bằng 5 a 2 3 2 . Tính theo a khoảng cách d từ A đến mặt phẳng (SBC) gần với giá trị nào nhất sau đây ?
A. 0,72a
B. 0,9a
C. 0,8a
D. 1,12a
Đáp án B
HDG:
Dễ dàng chứng minh ∆ S B C vuông tại B
Ta có (SAB) ⊥ (SBC) theo giao tuyến SB. Kẻ