Một hình hộp ABCD.A’B’C’D’ có thể tích bằng V. Khi đó, thể tích tứ diện A’C’BD.
A. 2 V 3
B. 2 V 5
C. V 3
D. V 6
Một hình hộp ABCD.A’B’C’D’ có thể tích bằng V. Khi đó, thể tích tứ diện A’C’BD
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Tính thể tích khối tứ diện A’C’BD bằng
A. a 3 2 .
B. a 3 3 .
C. a 3 3 2 .
D. a 3 2 3 .
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Tính thể tích khối tứ diện A’C’BD bằng:
A . a 3 2
B . a 3 3
C . a 3 3 2
D . a 3 2 3
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a,A’=2a. Biết thể tích hình cầu ngoại tiếp
tứ diện ABCD’ là
9
π
2
a
3
. Tính thể tích V của hình chữ nhật ABCD.A’B’C’D’
A. 2 a 3 3
B. 2 a 3
C. 4 a 3
D. 4 a 3 3
Hình hộp ABCD.A’B’C’D’ có các cạnh đều bằng a; các góc phẳng tại A đều bằng 60°. Tính thể tích V của tứ diện AB’CD’.
A. V = a 3 2 6
B. V = a 3 2 4
C. V = a 3 2 3
D. V = a 3 2 12
Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng 12 c m 3 . Tính thể tích khối tứ diện AB’CD’.
A. 2 c m 3 .
B. 3 c m 3 .
C. 4 c m 3 .
D. 5 c m 3 .
Cho hình hộp ABCD.A’B’C’D’ có diện tích các mặt (ABCD), (ABB’A’) (ADD’A’) lần lượt bằng 20 c m 2 , 28 c m 2 , 35 c m 2 . Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’
A. 120 c m 3
B. 160 c m 3
C. 130 c m 3
D. 140 c m 3
Cho hình hộp ABCD.A’B’C’D’ có diện tích các mặt ( A B C D ) , ( A B B ' A ' ) , ( A D D ' A ' ) lần lượt bằng 20cm2, 28cm2, 35cm2. Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’
Cho hình hộp ABCD.A’B’C’D’. Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện ACB’D’
A. 7 3
B. 3
C. 8 3
D. 2