Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a,A’=2a. Biết thể tích hình cầu ngoại tiếp
tứ diện ABCD’ là
9
π
2
a
3
. Tính thể tích V của hình chữ nhật ABCD.A’B’C’D’
A. 2 a 3 3
B. 2 a 3
C. 4 a 3
D. 4 a 3 3
Cho hình hộp ABCD.A’B’C’D’ có diện tích các mặt (ABCD), (ABB’A’) (ADD’A’) lần lượt bằng 20 c m 2 , 28 c m 2 , 35 c m 2 . Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’
A. 120 c m 3
B. 160 c m 3
C. 130 c m 3
D. 140 c m 3
Cho hình hộp đứng ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a, A B C ^ = 45 ° . Tính thể tích V của khối hộp ABCD.A’B’C’D’.
A. V = a 3 2 4
B. V = a 3
C. V = a 3 2 2
D. V = 2 a 3
Cho khối hộp chữ nhật ABCD.A’B’C’D’ có thể tích là V. Biết A’M=M’A, DN=3ND’, CP=2PC’. Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Tính thể tích khối đa diện nhỏ hơn tính theo V bằng?
A. 5 V 12
B. 7 V 12
C. V 4
D. V 6
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có A B = a , A A ' = 2 a . Biết thể tích hình cầu ngoại tiếp tứ diện ABCD′ là 9 π 2 a 3 . Tính thể tích V của hình chữ nhật ABCD.A′B′C′D′.
A. 4 a 3
B. 4 a 3 3
C. 2 a 3
D. 2 a 3 3
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AD=b, AA’=c. Tính thể tích V của khối chóp A.A’B’C’D’
A. V = 1 6 a b c
B. V = a b c
C. V = 1 3 a b c
D. V = 1 2 a b c
Cho biết thể tích của một khối hộp chữ nhật là V, đáy là hình vuông cạnh a. Khi đó diện tích toàn phần của hình hộp bằng
A. S t p = 2 2 V a + a 2
B. S t p = 2 V a + a 2
C. S t p = 2 V a 2 + a
D. S t p = 4 V a 2 + a
Khối lăng trụ đều ABCD.A’B’C’D’ có thể tích 24 c m 3 . Tính thể tích V của khối tứ diện ACB’D’.
A. V = 8 c m 3
B. V = 6 c m 3
C. V = 12 c m 3
D. V = 4 c m 3
Gọi V là thể tích của hình lập phương ABCD.A’B’C’D’, V 1 là thể tích tứ diện A’ABD. Hệ thức nào sau đây đúng?
A. V = 3 V 1
B. V = 4 V 1
C. V = 6 V 1
D. V = 2 V 1