Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Ngọc Lộc
3 tháng 2 2021 lúc 11:25

- Đường thẳng (d, ) có : \(\overrightarrow{u}\left(-1;6\right)\)

Mà (d) song song với (d,)

=> \(\overrightarrow{u}\left(-1;6\right)\) là vecto chỉ phương của (d)

=> Phương trình tham số của (d) là :

\(\left\{{}\begin{matrix}x=3-t\\y=-4+6t\end{matrix}\right.\) \(\left(t\in R\right)\)

Vậy ...

Lê Thu Trang
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 15:50

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 20:12

a: Vì Δ//d nên Δ: 3x-4y+c=0

Thay x=1 và y=4 vào Δ, ta được:

c+3-16=0

=>c=13

b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0

Thay x=-3 và y=-5 vào Δ, ta được:

c+4*(-3)+3(-5)=0

=>c-27=0

=>c=27

=>4x+3y+27=0

Giúp mik với mấy bạn ơi
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2023 lúc 11:03

Chắc là đề bài thiếu dữ kiện, do có vô số đường thẳng song song với d, tất cả những đường thẳng có dạng \(3x+2y+c=0\) với \(c\ne-11\) đều thỏa mãn yêu cầu

Tuấn Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 7:14

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

Hồ đức trí
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 3 2022 lúc 9:21

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

Phí Minh Hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 8:35

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0

Phạm Hoàng Bảo Ân
Xem chi tiết
Minh Nhân
27 tháng 5 2021 lúc 14:00

Vì : (d) song song với đường thẳng (d') : y= x + 7 

=> (d) có dạng : y = x + b 

Vì (d) đi qua A(1,4) : 

=> 4 = 1 + b 

=> b = 3 

(d) ; y = x + 3 

 

Trần Ái Linh
27 tháng 5 2021 lúc 14:01

`d////d' => d` có dạng: `y=x+b`

`A(1;4) \in d <=> 4=1+b<=>b=3`

`=>d : y=x+3`.

shanyuan
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 20:18

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

shanyuan
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 12 2021 lúc 7:50

\(a,\text{PT hoành độ giao điểm: }2x+3=-3x-2\Leftrightarrow x=-1\Leftrightarrow y=1\Leftrightarrow A\left(-1;1\right)\\ b,\text{Gọi đt đó là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\a=-1;b\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\Leftrightarrow y=-x\\ d,\text{Gọi đt cần tìm là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\Leftrightarrow y=-2x-1\)