Cho tứ diện ABCD có AB = 2a, tam giác BCD vuông tại C, BD = 2a, BC = a và 2 A C 2 - A D 2 = 6 a 2 Gọi E là trung điểm cạnh BD. Góc giữa hai đường thẳng AB và EC bằng
A. 30 o
B. 90 °
C. 45 o
D. 60 o
Cho tứ diện ABCD có AB = 2a, tam giác BCD vuông tại C, BD = 2a, BC = a và 2 A C 2 - A D 2 = 6 a 2 Gọi E là trung điểm cạnh BD. Góc giữa hai đường thẳng AB và EC bằng
A. 30 °
B. 90 °
C. 45 °
D. 60 °
Gọi F là trung điểm cạnh AD có
A B / / E F ⇒ A B , E C = E F , E C
Tam giác ∆ E F C có
c o s ∠ F E C = E F 2 + E C 2 - F C 2 2 . E F . E C
Vậy góc giữa hai đường thẳng AB và EC bằng 60 °
Chọn đáp án D.
Cho tứ diện ABCD có AB=AC=AD=2a. Biết tam giác BCD có BC=2a, BD=a, C B D ^ = 120 ° . Tính thể tích tứ diện ABCD theo a
Cho tứ diện ABCD có AB = AC = AD = 2a. Biết tam giác BCD có BC = 2a, BD = a, C B D ^ = 120 0 . Tính thể tích tứ diện ABCD theo a.
A. 5 3 a 3
B. 5 2 a 3
C. 5 a 3
D. 5 6 a 3
Phương pháp:
Sử dụng các công thức diện tích tam giác và công thức Cosin
Cách giải:
Ta có:
Gọi I là tâm đường tròn ngoại tiếp tam giác BCD.
Do AB = AC = AD
Thể tích tứ diện ABCD là
Chọn D.
cho tứ diện ABCD có AB⊥BC ,AB⊥ BD ,AB=a ,BC=2a ,▲ BCD vuông cân tại C có BH⊥AC. Tính góc ( BH,CD)
AB vuông góc BC
AB vuông góc BD
=>AB vuông góc (BCD)
=>AB vuông góc CD
BC vuông góc CD
AB vuông góc CD
=>CD vuông góc (BCA)
=>CD vuông góc BH
=>(BH;CD)=90 độ
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Gọi M là trung điểm của AD và K là trung điểm của BD
Góc giữa CM với mặt phẳng (BCD) là:
A. B C M ⏜
B. D C M ⏜
C. K C M ⏜
D. A C M ⏜
Loại phương án A và B vì BC và CD không phải là hình chiếu của CM trên (BCD)
Phương án C đúng vì :
Đáp án C
Cho tứ diện ABCD có BC = CD = BD = 2a, AC = AD = 2 , AB = a. Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là:
A. 90 o .
B. 60 o .
C. 45 o
D. 30 o
Đáp án D
nên ∆ BCDlà tam giác đều.
nên theo định lý Py-ta-go đảo, ta có ∆ ACD vuông cân tại A .
Khi đó, gọi M là trung điểm CD thì: AM ⊥ CD và BM ⊥ CD Ta có:
∆
BCD đều có đường cao
∆
ACD vuông cân tại A nên trung tuyến
Áp dụng định lý hàm cos trong
∆
AMB, ta có:
Vậy góc giữa hai mặt phẳng (ACD) và (BCD) có số đo bằng 30 o
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa CM với mặt phẳng (BCD) bằng:
A. 2 3 3
B. 3 2
C. 2 3
D. không xác định
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
A. 5
B. 1
C. 51 17
D. Không xác định
Góc giữa AC với mặt phẳng (ABD) là góc KAC vì CK ⊥ (ABD) nên AK là hình chiếu của AC trên mặt phẳng (ABD).
Đáp án C
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
A. 2 a 21 7 .
B. a 21 7 .
C. a 7 7
D. 2 a 7 7
Đáp án A
Chọn hệ trục tọa độ Oxy
A D = 2 a tan 60 o = 2 a 3
Từ M kẻ MH song song với AC ta có MH =a
PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1
Vậy khoảng cách từ
P
(
0
;
4
a
;
0
)
đến (BCD) là: